

Rel.	Date	Description	
0.0	30/04/2020	User Guide for Smartris Drive - first release	
1.0	07/09/2020	Upgrade for new FW with improvements for Encoder Feedback	
1.1	30/09/2020	Upgrade for new FW 1.0.7	
1.2	20/10/2020	Upgrade for new FW 1.0.8	
1.3	29/10/2020	Errata corrige update for new FW 1.0.8	
1.4	15/12/2020	Upgrade for new FW 2.0.0	
1.5	27/01/2021	Upgrade for new FW 2.0.1	
1.6	31/03/2021	Fuse reference	
1.7	05/08/2021	Upgrade for new FW 2.2.5 - Modbus Control Mode	
1.8	05/04/2022	Upgrade for new FW 2.2.6 - Modbus Control Mode	
1.9	05/05/2022	Added Test&Debug Mode	
2.0	01/09/2022	Upgrade for new FW 2.3.0	
2.1	20/12/2022	Upgrade for new FW 2.3.1	

Release 2.0a Date 20/01/2022 This User Guide refers to FW 2.3.1

Lafert Servo Drives Via E. Mattei 84/25 40138 Bologna, Italy Tel. +39 / 051 780 294 Fax +39 / 051 781 293 info.lafert@lafert.com

this page is intentionally left blank

INDEX

1	PURPOSE OF MANUAL	7
1.1	Purpose of the Manual	7
1.2	Trademarks	7
1.3	Warning Safety Information	7
1.4	Warranty Information	9
1.5	Electrical Specifications	9
1.6	Electrical Installation, Terminal Wirings	9
1.7	Environmental Condition	15
<i>1.8</i> 1.8.1 1.8.2 1.8.3	Transport and Storage 1 Transport 1 Packaging 1 Storage 1	<i>15</i> 15 15 16
<i>1.9</i> 1.9.1 1.9.2 1.9.3 1.9.4 1.9.5 1.9.6	Approvals 1 CE Conformity 1 Safety 1 UL Recognized 1 EMC Requirements 1 Safety Conformity (STO) 1 Environmental Conditions for Vibration/Shock 1	16 .6 .6 .6 .6 .7 .7
1.10	Motor/Circuit Protection	
<i>1.11</i> 1.11.1 1.11.1 1.11.1	Startup 1 Mechanical installation	<i>18</i> .8 .8 .9
1.12	Maintenance	
2	DIMENSIONS	20
2.1	Size B Dimension	
2.2	Mechanical Installation	
2.3	Electrical Installation	
2.4	Requirements for Power adapters and Supply Voltage	
2.5	Requirements for Heat-sink	
<i>2.6</i> 2.6.1	Mounting and Installation Space	<i>22</i> 22
3	TECHNICAL DATA	23
3.1	Sizes Main Power Supply	23
4	OPERATION MODE FUNCTIONS	24
4.1	Drive Control Mode	
<i>4.2</i> 4.2.1	Analog Mode DAC monitoring	24 26
4.3	CANOpen Mode	
4.4	Modbus Mode	
4.5	Ramp Speed Set-up	
<i>4.6</i> 4.6.1 4.6.2 4.6.3	Motor Brake 2 Manual Brake Mode 2 Automatic Brake Mode 2 Electronic Dynamic Stop 2	27 28 29 29

4.7	Torque limit		. 31
4.8	Digital I/O		. 32
4.8.1	Digital Input - Default Value	32	
4.8.2	Digital Input (Programmable)	33	
4.8.4	Digital Output	36	
40	Overland Management (I ² T)		37
4.9.1	Overload at low speed (FW 2.0.1).	37	
4.9.2	Overload with closer events (FW 2.0.1)	38	
4.10	OVER SPEED (FW 2.2.6)		. 38
5			30
5			20
5.1.1	STO Connection	39	. 59
5.2	Hardware Specifics		. 40
5.3	Software Specifics		. 40
5.4	Safe Operation Sequence Procedure		. 40
5.5	State Machine DSP402 with Safety State – CANopen Mode		. 41
5.6	State Machine with Safety State – Analog/Modbus Mode		. 43
5.7	Example of Schematic Application		. 44
5.7.1	Two Input feedback	44	
5.8	Functional Check & Maintenance		. 44
6	CANOPEN COMMUNICATION		45
6.1	CANopen Network Topology Overview		. 45
6.1.1	Server Relations	45	
6.1.2	CANOpen Baudrate & Node ID	46	
6.2	General Features of CAN		. 46
6.3	Communication CANopen Object (COB)		. 46
0.3.1	Object Dictionary	47	
6.4 6.4 1	Network Management (NMT)	 10	. 48
6.4.2	NMT state machine	49	
6.4.3	States and Communication Object Relations	50	
6.4.4	Network Initialization Process	50	
6.5	SDO and PDO Protocol		. 50
6.5.1	Access via data Objects (PDO/SDO)	50	
6.6	Emergency Protocol (EMCY)		. 52
6.6.1	Emergency objects	53	
0.0.2		55	
<i>6.7</i>	Heartbeat and Node Guarding	54	. 54
6.7.2	Heartbeat Protocol	54	
68	Store and Restore		55
6.8.1	Current parameter set (temporary)	55	
6.8.2	Default parameter set (Factory Settings)	56	
6.8.3	Application parameter set	56	
6.9	Device Control		. 56
6.9.1	Finite State Machine by DSP402	57	
0.9.2		50	
6.10	Profile Mode Supported		. 58
<i>6.11</i>	YOTILE VEIOCITY Mode Velocity Profile Operation Mode:	60	. 59
6.11.	2 Controller structure	60	
6.11.	3 RUN Sequence	62	
6.12	Torque Profile		. 63
		ES	

6.13	SinCos Management	. 65
7	MODUS COMMUNICATION	66
7.1	RS485 - Modbus Communication Settings	. 66
7.2	List of Read Input Registers	.67
7.3	List of Read Holding Registers	. 68
7.4	List of Write Single Holding Registers	. 69
7.5	List of Exception Code	. 70
7.6	Run Sequence	. 70
<i>7.7</i> 7.7.1 7.7.2 7.7.3	Examples: Change Modbus Communication Settings Change Address Sequence 71 Change Baud Rate Sequence 71 Change COM Setting Sequence 72	. 71
8	MEASURING UNIT CONVERSION	73
8.1	Measuring Unit Conversion Parameters	. 74
9	DIAGNOSTIC	75
10	CONNECTION SCHEME	77
10.1	Label/Code	. 78
11	DEBUG TEST MODE	80
<i>11.1</i> 11.1.1 11.1.1 11.1.1	CANOpen Test "Command Mode"	. 80
<i>11.2</i> 11.2. 11.2. 11.2.	CANOpen "Sniffering Mode"	. 83
<i>11.3</i> 11.3.1 11.3.1 11.3.1	ModBus Test "Command Mode"	.86
APPE	NDIX A OPTIONS	88
APPE	NDIX B DRIVE DISPOSAL	90

Tables and Figures:

Picture 1 - Smartris Wiring	. 10
Picture 2 - Dimensions	. 20
Picture 3 - Mounting	. 22
Picture 4 - Analog Mode State Machine	.26
Picture 5 - Brake timeframe Automatic: Standby to Run	. 29
Picture 6 - Run to Standby without Dynamic stop	. 30
Picture 7 - Run to Standby with Dynamic brake	. 30
Picture 8 - Fault condition: Run to Fault without Dynamic brake	.31
Picture 9 - Fault condition: Run to Fault with Dynamic brake	.31
Picture 10 - Emergency enable configuration	. 32
Picture 11 - STO Output FeedBack Relay	.36
Picture 12 - I ² T Management	. 37
Picture 13 - STO Machine	.40
Picture 14 - State Machine DSP402 with Safety State	.42
Picture 15 - State Machine Analog Mode with Safety State	.43
Picture 16 - STO Application	.44

Picture 17 - CANOpen Connection	.45 .48 .62 .66 .73 .73 .73 .77
Picture 26 - Sniffer Connection Scheme	.80
Picture 27 - Modbus TEST Connection Scheme	.86
Table 1 - Power Supply Wiring	9
Table 2 - Motor Phases Wiring	.10
Table 3 - Brake Wiring	.10
Table 5 - I/O Willing	11
Table 6 - Feedback Wiring	.12
Table 7 - Environmental Conditions	.15
Table 8 - Storage	.16
Table 9 - Dimensions	.20
Table 10 - Technical Data AGV	.23
Table 11 - Technical Power Data	.23
Table 12 - IO Analog Mode	.25
Table 13 - Analog Mode Led Status	.25
Table 15 - Programmable Innuts	. 20
Table 16 - STO Wiring	39
Table 17 - STO Output State	40
Table 18 - CANOpen Signal Wiring	.45
Table 19 – Finite State Machine by DSP402	.58
Table 20 – List of Modbus Read Input Registers	.68
Table 21 – List of Modbus Read Holding Registers	.69
Table 22 – List of Modbus Single Write Holding Registers	.69
Table 23 – List of Modbus Exception Code	.70
Table 24 - LED Status - Diagnostic	. 75
Table 25 - Error Code	. /6
Table 26 - Power Supply Wiring Scheme	.//
Table 27 - Molor Flidses Scheme (see Wiring Example Chanter 1)	.//
Table 29 - Label Description	. / /
Table 30 - Code Description	.79
Table 31 – CAN Connection	.81
Table 32 - Power Supply Wiring Scheme	.81
Table 33 - Motor Phases Scheme	.81
Table 34 - Brake Scheme (see Wiring Example Chapter 1)	.81
Table 35 – CAN Connection	.84
Table 36 – Modbus Connection	.86

REFERENCE DOCUMENTS:

ı 생 smartris i

- Lafert CANOpen Manual rel. 2.0
- ٠
- CiA 301 (310_1v01010005_cor.pdf) CiA 402 (CiA® 402 Draft Standard Proposal.pdf) ٠

1 | PURPOSE OF MANUAL

1.1 Purpose of the Manual

smartris

This operating guide provides information for safe installation and commissioning of the Smartris Drive.

Read and follow the instructions to use the Lafert Smartris Drive safely and professionally and pay attention to the safety instructions and general warnings.

Always keep this operating guide available with the Smartris Drive.

This operating guide provides information for safe installation and commissioning of the Lafert Smartris Drive: read carefully the entire guide before installing and using the equipment.

Attention Ce mode d'emploi est prévu pour servir à du personnel qualifié.

A qualified person has the knowledge and authorization to perform tasks such as transporting, assembling, installing, commissioning and operating motors.

This manual is regularly reviewed and updated. All suggestions for improvement are welcome.

1.2 Trademarks

Any product names in this document may be registered trademarks. The sole purpose of any trademarks in this document is the identification of the corresponding products.

1.3 Warning Safety Information

In order to achieve the optimum, safe operation of the Smartris Drive, it is imperative that you implement the safety procedures included in this installation guide. This information is provided to protect you and to keep your work area safe when operating the Smartris Drive and accompanying equipment.

Safety Instructions: for the electrical installation, the ESD instructions must be observed.

\land	∧ Caution		
	 The Systems that are electrically connected must be properly secured so they cannot be switched back on and warnings signs must be put up. Before startup, it must be checked that the wiring is correct and is free of mechanical damages. Only drive with wiring in perfect condition may be enabled to operation. Incorrect voltage, reverse polarity and defective wiring can damage the drive. Do not connect or disconnect electric cables while the equipment is powered or running. The operator is responsible for keeping the safety installations in perfect working order, conforming to prevailing laws and standards. 		

Please read this chapter carefully before you begin the installation process.

The Lafert Smartris Drive contains electrostatic-sensitive components that can be damaged if handled incorrectly. To prevent any electrostatic damage, avoid contact with highly insulating materials, such as plastic

film and synthetic fabrics. Place the product on a conductive surface and ground yourself in order to discharge any possible static electricity build-up.

To avoid any potential hazards that may cause severe personal injury or damage to the product during operation, keep all covers and cabinet doors shut.

\wedge	Attention		
	 Les systèmes qui sont connectés électriquement doivent être correctement sécurisés afin qu'ils ne puissent pas être rallumés et des signaux d'avertissement doivent être mis en place. Avant la mise en service, il faut vérifier que le câblage est correct et exempt de dommages mécaniques. Seul le variateur dont le câblage est en parfait état peut être autorisé à fonctionner. Une tension incorrecte, une polarité inversée et un câblage défectueux peuvent endommager le variateur. 		
	 Ne pas brancher ni débrancher les câbles électriques lorsque l'équipement est sous tension ou en marche. L'opérateur est responsable du maintien en parfait état de fonctionnement des installations de sécurité, conformément aux lois et normes en vigueur. 		

The following safety symbols are used in this manual:

Hot Surface Warning

To alert against surfaces that may reach high temperatures. The heatsink and wires may reach high temperatures.

Warning

This information is needed to avoid a safety hazard, which might cause bodily injury or death as a result of incorrect operation:

- To avoid electric arcing and hazards to personnel and electrical contacts, never connect/disconnect the servo drive while the power source is on.
- Power cables can carry a high voltage, even when the motor is not in motion. Disconnect the Lafert Smartris Drive from all voltage sources before servicing.
- After shutting off the power and removing the power source from your equipment, wait at least 1 minute before touching or disconnecting parts of the equipment that are normally loaded with electrical charges (such as capacitors or contacts). Measuring the electrical contact points with a meter, before touching the equipment, is recommended.

Caution

Important

- This information is necessary to prevent bodily injury, damage to the product or to other equipment:
 The maximum DC power supply connected to the instrument must comply with the parameters outlined in this guide.
- When connecting the Lafert Smartris Drive to an approved control supply, connect it through a line that is separated from hazardous live voltages using reinforced or double insulation in accordance with approved safety standards.
- Before switching on the Smartris Drive, verify that all safety precautions have been observed and that the installation procedures in this manual have been followed.
- Make sure that the Safe Torque Off is operational.
- If a fire breaks out, do not direct the water extinguishers near the equipment to put out the flames.

Identifies information that is critical for successful application and understanding of the product.

Safety measures must be taken both for people and machines, in compliance with Standards and local conditions.

Les symboles de sécurité suivants sont utilisés dans le manuel :

Mise en garde pour surface chaude Avertissement concernant les surfaces qui peuvent atteindre des températures élevées. Le dissipateur thermique et les fils peuvent atteindre des températures élevées.

	Mise en garde
<u>4</u>	 Ces informations sont nécessaires pour éviter un danger pour la sécurité, qui pourrait causer de blessures corporelles ou la mort à la suite d'un fonctionnement incorrect : Pour éviter les arcs électriques et les risques pour le personnel et les contacts électriques, ne jama connecter/déconnecter le servomoteur lorsque la source d'alimentation est allumée. Les câbles d'alimentation peuvent véhiculer une haute tension, même lorsque le moteur n'est pas e mouvement. Débrancher le variateur Lafert Smartris de toutes les sources de tension avant de procéder l'entretien. Après avoir coupé l'alimentation et retiré la source d'alimentation de l'équipement, attendre au moins ur minute avant de toucher ou de déconnecter des parties de l'équipement qui ont normalement des charge électriques (comme les condensateurs ou les contacts). Il est recommandé de mesurer les points de conta électrique avec un compteur, avant de toucher l'équipement.
<u> </u>	Attention Ces informations sont nécessaires pour éviter des blessures corporelles, des dommages au produit ou d'autres équipements :
<u> </u>	 L'alimentation maximale en courant continu, connectée à l'instrument, doit être conforme au paramètres décrits dans ce guide. Lors de la connexion du variateur Lafert Smartris à une alimentation de contrôle autorisée, la paramètre dans tensions de parameters à l'iside d'une institute restaurée en la parameter de parameters à l'iside d'une institute restaurée en la parameters de la contrôle autorisée, la parameter de parameters de la contrôle autorisée.

- S'assurer que la fonction Safe Torque Off est opérationnelle.
- Si un incendie se déclare, ne pas diriger les extincteurs à eau à proximité de l'équipement pour éteindre les flammes.

1.4 Warranty Information

The products covered in this manual are warranted to be free of defects in material and workmanship and conform to the specifications stated either within this document or in the product catalogue description.

Do not remove any cover.

Interventions or modifications made to the equipment, or parts of it, and/to the standard fittings, which are not authorized by us, will void the warranty.

Any faults caused by failure to comply with instructions will NOT be covered by the warranty.

1.5 Electrical Specifications

Main power supply	
Supply Voltage	Typical 48 Vdc (20 Vdc Min/60Vdc Max)
STO Supply	24 Vdc (Dedicated Connection)

*to supply 24Vdc contact the manufacturer

Do not connect power supply voltages if higher than the admissible voltage range. If excessive voltages are applied to the drive, its internal components will be damaged.

1.6 Electrical Installation, Terminal Wirings

POWER SUPPLY SMARTRIS WIRING		
PIN	SIGNAL	DESCRIPTION
+	+ VBUS	Connection to + Vbus (+48 Vdc)
-	- VBUS	Connection to - Vbus
Table 1 Dower Supply Wiring		

Table 1 - Power Supply Wiring

MOTOR PHASES SMARTRIS WIRING			
PIN	SIGNAL	DESCRIPTION	
U	PHASE U	Motor Phase U	
v	PHASE V	Motor Phase V	
w	PHASE W	Motor Phase W	
		Table 2 - Motor Phases Wiring	

Recommended Cable: see chapter 3 Philip head screw M6, Tightening torques = 7 Nm

BRAKE		
PIN	SIGNAL	DESCRIPTION
+	+ VBUS	Motor Brake + (connect to + Vbus)
В	BRAKE	Motor Brake -

Table 3 - Brake Wiring Minimum Recommended Cable: 1 mmq. -AWG19

X1 - INPUT/OUTPUT Connection

X1 - I/O SIGNAL			
PIN	SIGNAL	DESCRIPTION	COLOR
1	0V24	GND Control Board supply	Black
2	COMMON	Common Input	Pink
3	IN1	Digital Input 1	White/Pink
4	IN2	Digital Input 2	Yellow/Pink
5	IN3	Digital Input 3	Green/Pink
6	IN4	Digital Input 4	Brown/Pink
7	TX	Tx232 Signal*	Grey/Brown
8	RX	Rx232 Signal*	Grey/Green
9	N.C	-	White/Grey
10	GND_COM	GND RS232 Serial Communication	Grey
11	RET1	Safety Relays 1	White/Red
12	ST01	Safety Relays STO1	Yellow/Red
13	GND_REF	GND Analog Reference	Brown/Green
14	REF -	Analog Input Neg	Brown
15	REF +	Analog Input Pos	Yellow
16	+10V	10 Vdc Output	Violet
17	OUTDAC	Analog Output	White/Yellow

* RS232 protocol is used for service and drive configuration: for more information contact the manufacturer

	X1 - I/O SIGNAL		
PIN	SIGNAL	DESCRIPTION	COLOR
18	GND_DAC	GND reference for Analog Output	White/Black
19	GND CAN/RS485	GND reference for CAN/RS485	Brown/Black
20	CAN_T/RS485_T	120 Ω Termination resistance CAN/ModBus (connect to CAN H)	White/Green
21	N.C	-	-
22	COM_RET	Common Relays	Brown/Red
23	STO2	Safety Relays STO2	Yellow/Brown
	24V-48V	Switching Power Supply for Logic Board; consumption=6W / At 24V 250mA of	
24	[range 20-60Vdc]	absorption. It is used to switch ON the logic board in absence of 48V power supply.	Red
25	V_OUT	Supply Output	Blue
26	OUT1	Digital Output 1 – DRIVE OK	White/Blue
27	OUT2	Digital Output 2 - Open Drain - Programmable	Grey/Blue
28	OUT3	Digital Output 3 - Open Drain - Programmable	Green/Blue
29	OUT4	Digital Output 4 – Brake Command (with brake is externally supplied)	Yellow/Blue
30	CAN_L / RS485-	CAN_L Connection / ModBus RS485-	Green
31	CAN_H /RS485+	CAN_H Connection / ModBus RS485+	White
32/33	N.C	-	-
34	RET2	Safety Relays 2	Green/Red
35	STO_COM	Common STO1 / STO2	Yellow/Black

Table 4 - I/O Wiring

CABLE CONNECTOR INPUT/OUTPUT	
Housing	AMPSEAL 776164-1
Backshell	AMPSEAL 776463-1
Contacts	AMPSEAL 770854-1
Seal plug	AMPSEAL 770678-1
Table 5 - I/O Female Connector	

DIGITAL INPUT/OUTPUT	
Digital Input 24 V +/- 20%	
Impedance Input	3 kΩ, 7 mA - NPN/PNP type
Digital Output	24 V +/- 20%
Current Output	100 mA - NPN/PNP type

ı 😪 smartris i

ANALOG INPUT/OUTPUT		
Analog Input	± 10 V or Single ended 0 /+10V (10 kΩ) accuracy +/- 2% of full scale. linearity = better than 1% , typ. value = 0,5%	
Analog Output	0 /+10V (R Load ≥ 1 kΩ) +/- 4% of full scale	

X2 - FEEDBACK

X2 - FEEDBACK– See Annex A to see Lafert Motor Wirings			
PIN	RESOLVER	INC ENC+HALL	SINCOS ENCODER
1	S2	A+	SIN
6	S4	A-	REFSIN
2	S1	B+	COS
7	S3	B-	REFCOS
3	R1	Z+	DATA+
8	R2	Z-	DATA-
10	-	+5V	+8V
11	-	GND	GND
4	-	НΧ	-
9	-	XY	-
14	-	HZ	-
5	SCH	SCH	SCH
12	NTC1a	NTC1a	NTC1a
13	NTC1b	NTC1b	NTC1b

Table 6 - Feedback Wiring

All cables and components used for connecting the equipment must comply with prevailing Standards. When assembling the equipment, be sure it cannot be damaged in any way by the moving components.

	Warning
4	This information is needed to avoid a safety hazard, which might cause bodily injury or death as a result of incorrect operation:
	Avoid Ground loops when connecting I/O devices
	 When connecting a PC, encoder, switch or actuators on the I/O connector, be very careful that you do not create a path of current that flow from the ground signal (GND) pins on the I/O connector to the -V Main Power Supply terminal. If the -V Mains Ground wires (thick black) or -V terminals are disconnected while the +VPower Supply wires (thick red) or +V terminals are connected, a high current would flow from the ground (GND) pins, potentially causing serious damage to the controller and/or your external devices. Do not connect a wire between the I/O connector ground and the battery mi-nus terminal. Look for hidden connection and eliminate them. Note that ground signals GND of I/O connector pin N.1,10,13,18,19, are internally connected to -V Main Power terminal of the drive. Have a very firm and secure connection and don't use switches for wiring from the -Main supply
	(- Battery) and -V terminals of the drive.
	Do not use connectors or switches on the power ground cables.
	 It is suggested that the external I/O signals are insulated from –Vmain Power Supply to prevent ground loop and damages.
	Do not allow water to seep into the equipment.

Installation électrique, câblages de bornes

Mise en garde

Ces informations sont nécessaires pour éviter un danger pour la sécurité, qui pourrait causer des blessures corporelles ou la mort à la suite d'un fonctionnement incorrect :

Éviter les boucles de masse lors de la connexion de périphériques d'E/S

- Lors de la connexion d'un ordinateur, d'un encodeur, d'un commutateur ou d'actionneurs sur le connecteur d'E/S, veiller à ne pas créer de chemin de courant provenant des broches de terre du connecteur d'E/S et de la borne d'alimentation principale –V. Si les principaux fils de terre du contrôleur (noirs épais) ou les bornes sont déconnectés alors que les fils d'alimentation +V (rouges épais) ou les bornes sont connectés, le courant élevé s'écoulerait des broches de terre, causant potentiellement de graves dommages au contrôleur et/ou aux périphériques externes.
- Ne pas brancher de fil entre la masse du connecteur d'E/S et la borne négative de la batterie. Rechercher les connexions cachées et les éliminer. Il convient de remarquer que les signaux GND des broches N.1,10,13,18,19 du connecteur E/S sont connectés à la borne d'alimentation principale –V du variateur.
- La connexion du fil de terre du contrôleur et de la borne négative de la batterie doit être très ferme et sûre.
- Ne pas utiliser de connecteurs ou d'interrupteurs sur les câbles de mise à la terre.
- Il est suggéré que les signaux d'E/S externes soient isolés de l'alimentation principale –V pour éviter les dommages.
- Ne pas laisser l'eau s'infiltrer dans l'équipement.

Warning

This information is needed to avoid a safety hazard, which might cause bodily injury or death as a result of incorrect operation:

- 1) Connection for Safe Operation with Discharged Supply Voltage
- 2) Protection against Damage due to Regeneration The voltage generated by motors rotating while not powered by the drive can cause serious damage even if the controller is Off or disconnected. If the supply is not able to absorb and dissipate regenerated current, the voltage will increase until the over-voltage protection circuit cuts off the motors. While this process should not be harmful to the controller, it may be to the power supply, unless one or more of the protective steps below is taken:
- use a power supply that will not suffer damage in case a voltage is applied at its output that is
 higher than its own output voltage. This information is seldom published in commercial power
 supplies, so it is not always possible to obtain positive reassurance that the supply will survive such
 a condition.
- Place a battery in parallel with the power supply output.
- Place a shunt regulator such in picture below

2) Optional wiring for a potentiometer or a throttle ped
 2) Optional wiring for a backup power to logic

3) For CAN termination connect pin 20 to CAN H signal (pin31)

Smartris User Guide - FW 2.3.1

Rel. 2.0a – 20.12.2022

1.7 Environmental Condition

You can guarantee the safe operation of the Lafert Smartris Drive by ensuring that it is installed in an appropriate environment.

Features	Details
Operating ambient temperature according to IEC 60068-2-2	-10 °C to 40 °C (14 °F to 104 °F)
 Maximum Surrounding Air Temperature:	40°C (104 °F)
Air humidity during operation	Relative humidity < 85%, non-condensing
Installation altitude	< 1000 m above sea level without affecting performance
Protection class	IP30/IP54
Use in Pollution degree 3 Environment	3 (EN 61800-1, EN61800-5-1)

Table 7 - Environmental Conditions

Caution The Lafert Smartris Drive dissipates its heat by convection or by conduction. The maximum ambient operating temperature of 40 °C (104 °F) must not be exceeded. The Lafert Smartris have a Warning temperature drive (value depends by Manufacturer) readable by CANOpen (0x4301) and Warning Logic Board temperature (> 63°C) readable by CANOpen (0x4501)

Conditions ambiantes

Attention
Le variateur Lafert Smartris dissipe sa chaleur par convection ou par conduction. La température ambiante maximale de fonctionnement de 40 °C (104 °F) ne doit pas être dépassée. Les Lafert Smartris ont un variateur de température d'avertissement (la valeur dépend du fabricant)lisible par CANOpen (0x4301) et une température de carte logique d'avertissement (>63 °C) lisible par CANOpen (0x4501)

1.8 Transport and Storage

1.8.1 Transport

- Transportation only in original packaging by qualified personnel
- Avoid hard impacts and vibrations
- Transport temperature: -20/70 °C, max. 20 K/hour fluctuation
- Transport air humidity: Relative humidity max. 95%, non-condensing
- If the packaging is damaged, check the drive amplifier for visible damage.

Trasport The drive amplifier contains components that are sensitive to electrostatic charge and can be damaged when handled improperly.

Ensure proper ESD handling by qualified personnel.

L'amplificateur de puissance contient des composants sensibles aux charges électrostatiques et pouvant être endommagés en cas de manipulation incorrecte. Veiller à une manipulation correcte de la décharge électrostatique par le personnel qualifié.

1.8.2 Packaging

- ESD-compatible box
- Identification: Label attached to the outside of the box

Transport

1.8.3 Storage

	Storage	Details
	Storage Environmental Ambient temperature	-10 °C to 70 °C (14 °F to 158 °F)
7	Air humidity during operation	Relative humidity < 90%, non-condensing

HOW TO STORE A LAFERT DRIVE		
Short-Term Storage & Long- Term Drive Storage Indoor	 Storage at a temperature between -10° / +70° No condensation allowed (humidity < 90%) Cover the equipment during installation for prevent infiltration of dust, metallic shavings, water, oil No liability is assumed for errors caused by tampering the system or bad storage 	
Short-Term Storage (weeks or months)	Protect the drive from the elements, vibration and extreme heat	
Long-Term Storage (years)	 Location have to be clean, dry, environment with minimal to no vibration, such as away from railroad tracks and major freeways 	
Out of storage and Into Service	 Remove Dust and Dirt For a long storage (6 or more months), provide DC bus capacitor regeneration (supply Vbus "+" and "-" at 48Vdc 1h) before starting work. 	
Table 8 - Storage		

1.9 Approvals

1.9.1 CE Conformity

The Lafert Smartris Drive was tested in authorized testing laboratories in accordance with the requirements of this documentation.

The Lafert Smartris Drive is in conformity with the following **EC Directives:**

- Machinery Directive 2006/42/EC
 - Electromagnetic Compatibility (EMC) (2014/30/EU)
 - RoHS Directive (2011/65/EU)
 - WEEE Directive (2012/19/UE)

1.9.2 Safety

EN 61800-5-1 Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy.

1.9.3 UL Recognized

UL 61800-5-1 Standard for Adjustable Speed Electrical Power Drive Systems - Part 5-1: Safety Requirements - Electrical, Thermal and Energy

USL: Approval according standards of the United States in accordance with UL 61800-5-1 CNL: Approval according to national Canadian standards in accordance with C22.2 No. 274

UL Markings:

- Maximum Surrounding Air Temperature: 40 °C
- These devices are intended to be used in a pollution degree 3 environment
- Integral Solid State short circuit Protection
- Integral solid state short circuit protection does not provide branch circuit protection.Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes
- For Canada (CSA): Integral solid state short circuit protection does not provide branch circuit protection.
- Fuse: use only UL listed (see chapter 3)

1.9.4 EMC Requirements

In terms of emission and immunity, the Lafert Smartris Drive fulfills the requirement for the category "second environment" (industrial environment).

EN 61800-3 - Adjustable speed electrical power drive systems - Part 3: EMC requirements and specific test methods.

1.9.5 Safety Conformity (STO)

The Lafert Smartris Drive provides a two-channel, functionally safe STO function (Safe Torque Off). The function disables the PWM and the drive can be switched safely to torque OFF.

The circuit design has been tested and subsequently assessed by Lafert. According to that assessment, the circuit design used for the "Safe Torque Off" safety function in the Lafert Smartris Drive is suitable for meeting the requirements for SIL3 in accordance with

- EN61508 Functional safety of electrical/electronic/programmable electronic safety-related systems
- EN61800-5-2 and category SIL3 Adjustable speed electrical power drive systems Part 5-2: Safety requirements – Functional
- **EN ISO 13849-1:2015** Safety of machinery Safety-related parts of control systems Part 1: General principles for design.

The subsystems (Lafert Smartris Drive) are fully described in terms of safety by the following characteristics:

EN 13849-1	EN61800-5-2	PFHD [1/h]	
PLe	SIL3	4,43 E-08	

1.9.6 Environmental Conditions for Vibration/Shock

The drive fulfills the following specifications:

- 1. Vibration according to DIN EN 60068-2-6:2008
 - Sweep1 (*EN 60068-2-6*)
 - Frequency range 20Hz < f < 500Hz 50m/s2 Acceleration 10ct/min 50 cycles
 - Sweep2 (2006/42/EC) Frequency range 10Hz < f < 57Hz 0.075mm Acceleration 10ct/min 1 cycle
- 2. **EN60721-3-5**: Classification of Environmental Conditions Part 3: Classification of Groups of Environmental Parameters and Their Severities
 - 10Hz < f < 30Hz +6dB/Oct
 - 30Hz < f < 200Hz 0.005g2/Hz
 - 200Hz < f < 500Hz -12 dB/oct
 - 30 minutes

1.10 Motor/Circuit Protection

Circuit breaker hardware to protect the motor is not required as the motor is protected from overloading by an I²t function in the software.

The parameters for this function are:

- Nominal Current
- Peak Current
- Time of overload

Nominal and Peak Current are characteristics of motors, Time is written in a default value that depends to load and motor but is programmable by user.

It is also programmable the behavior of Drive after Overload time:

- 1) Drive goes in Overload Alarm
- 2) Drive gives at maximum Nominal Current

There is also a function that protect motor to over temperature by a motor temperature sensor: drive goes in Motor Overtemp Alarm above sensor threshold.

Les variateurs Lafert Smartris ont un avertissement de température moteur (>130 °C) lisible par CANOpen (0x4A01).

1.11 Startup

Startup is prohibited within the scope of the EC directives until it has been determined that the machine/system in which this Lafert Smartris Drive is installed corresponds to the regulations within these directives.

For installation in machines and systems, start of intended use of the Lafert Smartris Drive is prohibited until it has been determined that the machine or system complies with the provisions of the EC Machinery Directive 2006/42/EC and the EC EMC Directive 2014/30/EU.

For use in residential areas, additional EMC measures are necessary.

It is the responsibility of the manufacturer of the machine or system to ensure that the threshold values, as stipulated by the EMC regulations, are adhered to.

1.11.1 Mechanical installation

Attention

- For the mechanical installation, the ESD instructions must be observed.
- The drive amplifier (control cabinet version) must be protected from fog, water and penetration of metallic dust in the electrical cabinet.
- The drive must be checked for mechanical damage before installation. Only install flawless drive amplifiers.
- Installation in an electrical cabinet, sufficient ventilation must be provided.
- The operation of drive amplifiers exposed to condensation is not permitted.

^	Caution
<u>.</u>	 Installation may only be performed in a de-energized state! Systems that are electrically connected must be properly secured so they cannot be switched back on and warning signs must be put up. Assembly may only be performed by trained personnel

Mise en marche

^	Attention
<u>!</u>	 L'installation ne peut être effectuée qu'à l'état hors tension ! Les systèmes qui sont connectés électriquement doivent être correctement sécurisés afin qu'ils ne puissent pas être rallumés et des signaux d'avertissement doivent être mis en place. Le montage ne peut être effectué que par un personnel formé.

1.11.2 Correct Use

The Lafert Smartris Drive are intended for operation of permanent magnet synchronous servo motors with compatible feedback systems in stationary machines and systems.

Installation of the Lafert Smartris Drive is only approved in industrial environments. For use in residential areas, additional EMC measures are necessary. The user must prepare a hazard analysis of the final product.

1.11.3 Improper Use

The Lafert Smartris Drive are not suitable for operation of motors other than synchronous servo motors or motors with non-compatible feedback systems.

In addition, the following applications are expected from intended use.

The installation of drives in areas at risk, where inflammable substances or combustible vapors or powders are present, could trigger fire outbreaks or explosions. As such, install the drives far away from said areas at risk, even if they are used with motors fit for use under these conditions.

1.12 Maintenance

Maintenance

The Smartris Drive are maintenance free. Opening the Smartris Drive voids the warranty.

Repairs

The Smartris Drive may only be repaired by the manufacturer. Opening the Smartris Drive voids the warranty and safety according to the specified standards is no longer ensured.

smartris

2.1 Size B Dimension

MECHANICAL SPECIFICATIONS					
Weight [kg]	1,6				
Height without plug [mm]	69				
Height with plug [mm]	84,25				
Width [mm]	186				
Depth [mm]	116				
Depth [mm]	116				

Table 9 - Dimensions

Picture 2 - Dimensions

All measures are in mm.

2.2 Mechanical Installation

Safety Instructions:

- For the mechanical installation, the ESD instructions must be observed.
- The drive must be protected from fog, water and penetration of metallic dust in the electrical cabinet.
- The drive must be checked for mechanical damage before installation.
- In an installation in an electrical cabinet, sufficient ventilation must be provided.
- The operation of drive exposed to condensation is not permitted.

2.3 Electrical Installation

Safety instructions. For the electrical installation, the ESD instructions must be observed:

^	Caution
	 Systems that are electrically connected must be properly secured so they cannot be switched back on and warning signs must be put up.
<u>· · </u>	 Before startup, it must be checked that the wiring is correct and is free of mechanical damage. Only drive with wiring in flawless condition may be put into operation.
	• Incorrect voltage, reverse polarity and nonconforming wiring can damage or destroy the drive.
	• Inadeguate protection of the power supply can damage the cables or the drive.
	Observe the separate instructions for the STO safety function.

Installation électrique

Attention
 Les systèmes qui sont connectés électriquement doivent être correctement sécurisés afin qu'ils ne puissent pas être rallumés et des signaux d'avertissement doivent être mis en place. Avant la mise en service, il faut vérifier que le câblage est correct et exempt de dommage mécanique. Seul le variateur dont le câblage est impeccable peut être mis en fonction. Une tension incorrecte, une polarité inversée et un câblage non conforme peuvent endommager ou détruire le variateur. Une protection inadéquate de l'alimentation peut endommager les câbles ou le variateur. Respecter les autres instructions pour la fonction de sécurité STO.

2.4 Requirements for Power adapters and Supply Voltage

The STO's 24 VDC logic supply and 48 VDC power supply must be provided voltage sources with safe extra low voltage in or supply voltage sources having only

Caution The use of unsuitable power adapters not in SELV/PELV design can lead to dangerously high voltages in the even resulting in injuries or death.

Exigences des adaptateurs d'alimentation et de la tension

Attention L'utilisation d'adaptateurs d'alimentation inappropriés non conformes à la conception SELV/PELV peut entraîner des tensions dangereusement élevées, voire des blessures ou la mort.

The 48 Vdc power adapter supply must permit backfeed up to 60 Vdc, as the drive can generate a voltage up to 60 Vdc at the power adapter terminals when operating as a generator. The power adapter should be designed for such operation.

Otherwise suitable action must be taken to prevent backfeed.

2.5 Requirements for Heat-sink

The Smartris drive is rated for continuous operation. If you need to use in Continuous Duty (S1), you need to add an heat-sink:

Heat-sink SPECIFICATIONS		
Smartris*	add it to a heat-sink with $Rth = 0.15 \text{ °C/W}$	

In case you need less power you can reduce the heat-sink:

Max Power	Heat-sink
600 W	no additional heat-sink is required
1500 W	add it to a heat-sink with $Rth = 2 °C/W$
2300 W	add it to a heat-sink with $Rth = 0.7 \text{ °C/W}$

The drive can also be mounted with the cooling unit using the four holes (6,5mm diameter) at the heat-sink.

2.6 Mounting and Installation Space

The installation space must meet the requirements of protection class IP54 at least and needs a space of 10mm to other devices.

For the IP54 is suggested to use a PVC Cap to cover the power screws (for example MTA - Cod: 4410310)

2.6.1 Mounting position

The Smartris drive can be installed in any mounting position.

An orizontal mounting position with a cooling unit should be used to achieve optimum heat dissipation in case of use of heatsink with cooling fins.

Performance will decrease if the Smartris drive is not in mounting position, or if the converter is used with insufficient cooling.

Picture 3 - Mounting

3.1 Sizes Main Power Supply

48Vdc (range 20-60Vdc)

ID	Smartris Series Medel	AGV Payload	MOTOR POWER	MOTOR CABLE	SUPPLY CABLE	FUSE CE
	Series Model	[kg]	[W]	[mm ²] - AWG	[mm ²] – AWG	[A]
1	C1	600	430	2,5 -AWG14	2,5 -AWG14	16
1	51	1000	600		4 -AWG12	
2	M1	1500	1000	6 -AWG10	6 -AWG10	32
3	L1	2500	1500	6 -AWG10		63

Table 10 - Technical Data AGV

	INPUT		OUTPUT		FUSE UL				
Smartris Series Model	Input Voltage (Vdc)	Maximum Input Current @48Vdc(A)	Maximum Output Current (A)	Maximum Output Power (W)	Fuse Manufacturer	Fuse Model	Voltage Rating	Current Rating (A)	Symmetrical A.I.C. (KA)
S1	Nominal 24Vdc-	13	12.5	600				15	
M1	48Vdc Range	27	25.8	1500	LITTELFUSE	TLS Series	170Vdc	30	100KA
L1	20Vdc- 60Vdc	47	46	2300				60	

Table 11 - Technical Power Data

N.B. the list above is an example: the drive is available to use with Lafert or other motor types with similar characteristics.

This manual is available for the following feedback:

- Resolver
- Incremental Encoder
- SinCos Encoder

| OPERATION MODE FUNCTIONS

Smartris Drive has a Safety Torque OFF (STO), so verify that this circuit is correctly supplied (see STO Chapter) before all operation functions.

Attention Le variateur Smartris possède une fonction Safety Torque OFF (STO), il convient donc de vérifier que ce

circuit est correctement alimenté (voir chapitre STO) avant de démarrer ses fonctions.

4.1 Drive Control Mode

Caution

The drive can be piloted in 3 different mode:

- Analog Mode
- CANOpen Mode
- Modbus Mode

Information

Note: the **Drive Control Mode** is set by a internal parameter. To change the Control Mode please contact the manufacturer

4.2 Analog Mode

In this operation mode the Drive can be piloted with an analog reference -10 Volt +10Volt. Giving voltage on +VREF and -VREF (see paragraph Connector X1) it is possible to supply to the drive the speed set point.

The motor speed will depend from the reference voltage given on +VREF and –VREF and from the maximum speed available on the drive.

The input range of the reference voltage for the Speed Set Point is from -10V to +10V.

The Speed Set Point is proportional to the voltage supplied on the concerned input.

Giving a +10V voltage the motor will set to the maximum speed in clockwise rotation, motor front, while giving a -10V the motor will set to the maximum speed in counter clockwise rotation, motor front.

Example			
Input Voltage	Rotation	Speed	Torque (*)
+10V	clockwise	+ 3000 r.p.m	Мах
-10V	counter clockwise	- 3000 r.p.m	- Max
0V	Stop	0 rpm	0
+5V	clockwise	+ 1500 r.p.m	Half of max
-5V	counter clockwise	- 1500 r.p.m	- Half of Max

Information

(*) Note: In **Analog Mode** is possible to use the Torque control mode using the same input as in Speed control mode. To change the Analog Control Mode to Torque please contact the manufacturer

Information (*) Note: It is possible to modify the analog reference: 0=+/-10V, 1 =0..10V, 2 = +/-5V, 3 = 0..5V Default Value +/-10V, to modify contact the Manufacturer

X1 - 1	X1 - I/O SIGNAL				
PIN	SIGNAL	DESCRIPTION			
3	IN1	Digital Input 1 - Programmable (Default RUN COMMAND)			
4	IN2	Digital Input 2 - STOP COMMAND			
5	IN3	Digital Input 3 - ELECTRONIC DYNAMIC STOP COMMAND (see Par 4.5.2)			
6	IN4	Digital Input 4 - ELECTRONIC RESET DRIVER			
13	GND_REF	GND Analog Reference			
14	REF -	Analog Input Neg			
15	REF +	Analog Input Pos			
16	+10V	10 Vdc Output			

Table 12 - IO Analog Mode

To move the motor is necessary that the inputs IN1 and IN2 are ON.

IN1	IN2	DRIVE STATE	STATUS 1 LED GREEN	STATUS 2 LED YELLOW	LED VIEW
OFF	x	STAND-BY	"BLINK"	OFF	 1 BLINK - 50% 2 OFF
x	x	FAULT – See Diagnostic Chapter	"BLINK" code [x]	"BLINK" code [y]	1 see code (Chap.7) 2
ON	ON	RUN	ON	OFF	● 1 ON ◎ 2 OFF
ON	OFF	STOP	ON	ON	 1 ON 2 ON
x	x	SAFETY – STO OFF (see STO Chapter)	OFF	"BLINK"	 0FF 2 BLINK - 50%

Table 13 - Analog Mode Led Status

IN3 is programmable input for the logic *Electronic Dynamic (Emergency) Stop;* it is possible to enable/disable this function and select the logic: 1) 2)

IN3 ON \rightarrow OFF activate the Electronic Dynamic Emergency Stop

IN3 OFF→ON activate the Electronic Dynamic Emergency Stop

To move the motor is necessary that the inputs IN1 and IN2 are ON. See Digital I/O chapter

Variable Monitoring

In Analog Mode it's possible to monitor a list of variables on drive by CANOpen, connecting a CAN Interface and using LafertDrive SW:

• Object 2002h: Drive Status Mode

Object 2003h: Warning

- Object 2004h: State Lafert Servo Drive Machine
- Object 2030h: Temperature Drive

• Object 2031h: Temperature Motor Smartris User Guide - FW 2.3.1

Rel. 2.0a - 20.12.2022

- Object 2032h: Temperature Heat SinkObject 2041h: Voltage Bus
- Object 2050h: Torque Current
- Object 2053h: Velocity Filtered
- Object 3020h: Drive Digital Input
- Object 3022h: Analog Input
- Object 4000h: Safety State

4.2.1 DAC monitoring

Picture 4 - Analog Mode State Machine

It is possible to configure the analog output as a monitoring. The object to set DAC configuration is 3050h

- Analog Output = 0: Disabled •
- Analog Output = 1: Set as General Purpose
- It is possible to set a Digital value in the sub-index 2 and reading in the output.
- Read analog Output (object 3050h: 3)
- Example: Analog Ouput configured as "Velocity Monitoring" value (object 3050h: 2)

Smartris User Guide - FW 2.3.1

UAFERTDRIVES

4.3 CANOpen Mode

The Smartris Drive is available with CANOpen (DS301-DS402) alternatively to the Analog Mode: see the CANOpen Chapter for instructions.

To use CANOpen Smartris connected to laptop (free PC Tools available on the WEB) a USB to CAN interface is needed and one suggested is. PCAN-USB - IPEH-002021 (Peak manufacturer)

https://www.peak-system.com/PCAN-USB.199.0.html?&L=1

See also "Lafert CANOpen Manual"

4.4 Modbus Mode

The Smartris Drive is available with Modbus RS485 Control Mode alternatively to the other Control Mode: see the Modbus Chapter for instructions.

To use Modbus Smartris connected to laptop (free PC Tools available on the WEB) a USB to RS485 interface is needed and one suggested is.

https://ftdichip.com/products/usb-rs485-we-1800-bt/

See also "Lafert Modbus Manual"

4.5 Ramp Speed Set-up

It's possible to set the drive in ramp mode. This Operation mode makes that the variation of speed can be defined by ramp defined by user.

Enable of ramp on speed set point is performed by a flag on *(contact Manufacturer for drive in Analog Mode)* Ramp are enabled when this bit is checked. If you enable this bit you must save on E2Prom and then reset drive before to go in run mode.

There are two parameters that rule action of ramp, time to accelerate from 0 to max speed and time to decelerate from max speed to 0.

Ramp up delay is specified by *RampAcc* on *Drive Parameters (contact Manufacturer)*, and ramp down is specified by *RampDec* on *Drive Parameters (contact Manufacturer)*, If the speed ramps are active, each variation of speed set point will correspond a ramp with this parameter

These parameters are specified in millisecond, their maximum values are 32000. Minimum value depends by max velocity of drive. If you specify a too low value you will get a parameter program error.

This ramp operation mode not is active with STOP command.

During the RUN state If Run command drive down, the drive STOP motor rotation with rotor torque with ramp programmed in *RampDec*.

4.6 Motor Brake

The Motor Brake Management is an output who can drive and supply power directly to a motor brake.

Smartris User Guide - FW 2.3.1

LAFERTDRI

To enable this function, you must check BIT_BRAKE (second from the top) into window mask Customer Flag. The brake can be set in Automatic or Manual Mode:

- Automatic Mode: The brake will be released (Brake+ = 24V) automatically when the Smartris Drive is set in RUN/Enable.
- Manual Mode: the user can be release the brake using a dedicated command in CANOpen/Parameter in RAM.

	Brake Options							
N°	Field	Configura tion	Definition					
1	Motor Brake Option (*)	О _ь 1 _ь	Motor Brake disabled or Motor Brake is not present Motor Brake enabled					
2	Motor Brake Delay	[ms * 10]	Delay open command. This timeout is the delay between STBY Status and unlock brake.					
3	Unlock Brake time	[ms * 10]	Delay between STOP and RUN mode before unlock Brake. This timeout depends by kind of motor brake.					
4	Brake timeout	[ms * 10]	Only without Dynamic Stop (see object 0x3007) Max time programmed for natural Inertia deceleration. At the end of this timeout the brake is locked and drive will be in STBY status.					
5	Automatic/Manual Mode Configuration	0ь 1ь	Automatic Mode Activated Manual Mode Activated					
6	Motor Brake Status	0 _b 1 _b	Brake Status: activated \rightarrow Motor is locked Brake Status: released \rightarrow Motor is not locked					
7	Brake Type	1 2	Magnetic Brake Spring Brake					

Table 14 – Brake Options

 Warning

 (*) If the motor does not have the brake, this value has 0 as default value.

 The user CAN'T enable because it is not present.

Mise en garde

(*) Si le moteur n'a pas de frein, cette valeur a 0 comme valeur par défaut. L'utilisateur NE PEUT PAS l'activer car il n'est pas présent.

4.6.1 Manual Brake Mode

In Analog mode set flag *(contact Manufacturer)* "MANUAL BRAKE" to command the brake use **ParComBrake** • **ParComBrake** = 1 BRAKE released → motor axis free

• **ParComBrake** = 0 BRAKE active \rightarrow motor axis locked

In CANopen Mode set **bit 1** on 60FEh subindex 1,

• SetBrake [index 60FEh, subindex 1, bit 0] = 1 BRAKE RELEASED

Smartris User Guide - FW 2.3.1 Rel. 2.0a – 20.12.2022

4.6.2 Automatic Brake Mode

STANDBY \rightarrow **RUN**:

The follow graph describes the timing of the brake when the drive moves from STANDBY state to RUN state.

Picture 5 - Brake timeframe Automatic: Standby to Run

4.6.3 Electronic Dynamic Stop

Option	Definition
OFF (without)	the drive will decrease speed with natural inertia. When the speed is zero the drive lock motor brake, but if deceleration speed is major than delay time in set a flag on <i>Drive Parameters</i> , the drive however lock brake.
ON (with)	the motor will decrement speed with a ramp set by <i>electronic dynamic stop</i> parameters. When the ramp finish, the drive lock brake motor and stay in STOP for a delay time programmed with <i>DynBrake</i> parameter, finally the drive will turn in STBY mode with locked brake.

<u>Graph without Dynamic Stop</u>: The motor will stop for inertia when the velocity is lower +/- 5 rpm. If the motor fails to stop and the time "Brake timeout" expired, then the torque will be released immediately (see dashed line).

Picture 6 - Run to Standby without Dynamic stop

<u>Graph with Dynamic Stop</u>: The motor will stop following brake controlled ramp. If the motor fails to stop and the time "Max Timeout Dynamic Stop" expired, then the torque will be apply immediately (see dashed line).

FAULT CONDITION: RUN → FAULT

Graph without Dynamic Stop: the brake is immediately activated.

Picture 8 - Fault condition: Run to Fault without Dynamic brake

Graph with Dynamic Stop: the drive waits the actual velocity will be 0 to activate the brake.

Picture 9 - Fault condition: Run to Fault with Dynamic brake

4.7 Torque limit

Positive/Negative torque limit value (FW 2.0.1)

It is possible to set a Torque limit (in Analog and CANOpen mode) to set the configured maximum torque in the motor. The value shall be given percent of rated current. In Analog Mode is possible to set a unique value to Positive/Negative while in CANOpen there are different values of maximum torque:

- Positive takes effect in the case of motive operation is positive velocity or regenerative operation is negative velocity.
- Negative torque takes effect in the case of motive operation is negative velocity or regenerative operation is positive velocity

The default value of Torque limit is 100% and modifies can't be saved in e²prom memory but it can be changed in ram.

Mise en garde

Cet objet est contrôlé par certaines limites d'entraînement. Si la valeur n'est pas correcte, le variateur envoie un code d'abandon.

Si la valeur n'est pas correcte lors de l'initialisation, le variateur envoie un message d'erreur avec le protocole d'urgence. Voir le code d'erreur 0x8B23. La plage est [1;100] %

4.8 Digital I/O

In Lafert Drives are available:

- 4 Digital Inputs **DIG-INx**
- 4 Digital Outout **DIG-OUTx**
- 2 Safety Digital Input **DIG-STO**

4.8.1 Digital Input - Default Value

When is unset the flag "Enable CAN" (flag on *Drive Parameters -contact Manufacturer*) the drive is in "ANALOG MODE" so to move the motor are used 2 digital inputs:

- **<u>DIG-IN1</u>** = RUN in Analog Mode
- **<u>DIG-IN2</u>** = STOP in Analog Mode

If it is available the STO Safety: if the STO is active the drive goes in SAFETY status independently to other selection.

In case of FAULT the drive goes in FAULT State.

Instead, if is set flag "Enable CAN" the State Machine follows the "controlword" (6060h) and Dig In are ignored.

DIG-IN3 can be programmed as "Enable Input Emergency".

In this case DIG-IN3 is used to go from RUN to STANDBY in emergency condition with dynamic stop.

It is possible to enable this function:

- 1. SERIAL: setting flag on Drive Parameters (contact Manufacturer)
- 2. CANOPEN: setting object 0x3008h (Emergency Input Enable) subindex 1

There is the possibility to select the negative front to select the Dynamic stop:

1. SERIAL: setting flag on Drive Parameters (contact Manufacturer)

Warning

2. CANOPEN: setting object 0x3008h (Emergency Input Enable) subindex 2

The digital input number 3 can be configured as enabling signal hardware to move from "Operation Enable" state [RUN] to "Switched On" state [STANDBY].

It can be considered as emergency signal but it isn't safety certificated (for disabling the power in safety certificated condition referred to STO chapter of Drive User Guide).

E/S numériques

Attention Il peut être considéré comme un signal d'urgence mais il n'offre pas une garantie de sécurité (pour désactiver l'alimentation en condition de sécurité garantie, se référer au chapitre STO du Guide de l'utilisateur du variateur).

DIG-IN4 is Reset Drive Software.

4.8.2 Digital Input (Programmable)

From Firmware release 2.0.1 the Digital Inputs are programmable using internal parameters (modifiable by Lafert software). Contact the Manufacturer to set the different function for Digital Inputs. It is possible read the settings of Digital Input with object of CANOpen protocol or with "Lafert Studio Application" software.

In Analog Mode the drive can be controlled in two different modes:

 <u>Analog Reference (for Torque or Velocity profile):</u> The reference is proportional to the speed full scale or to the maximum current.

The reference can be $[-10...+10] \vee (default)$, $[-5...+5] \vee$, $[0...+10] \vee and [0...5] \vee$. To set a different range than the default range (±10V), contact the Manufacturer. For example:

If the full scale velocity is 3000 RPM and the analog reference [-10...+10] V is [-3000...+3000] RPM.

2. <u>Pre-set of digital set point (only velocity profile):</u>

The pre-sets are defined together Manufacturer. To use them and to defined contact the Manufacturer. It is possible to define 4 pre-sets with 2 digital set-points, or 4 digital set-points, or 8 digital set-points or 15 digital set-points.

The default digital inputs configuration is the drive in analog reference with range (±10V) (see paragraph "Digital Input -Default Value") and the

- Digital input 1: RUN
- Digital input 2: STOP
- Digital input 3: EN.EMERGENCY
- Digital input 4: RESET

To control the drive in analog mode the RUN function must be defined. This function of digital input needs to move the drive in the state machine.

The different combination for analog reference configuration is composed by at least digital input configured by RUN and other function:

• **STOP** : this function is the command to move the drive in STOP state

Smartris User Guide - FW 2.3.1

Rel. 2.0a – 20.12.2022

- **RESET**: this function is the command reset (it is an hardware reset). The reset has a filter with 100ms.
- **DCW** (*): this function is the signal of a limit switch for clockwise. If the input state is 1 the drive goes in STOP state.
- **DCCW** (*): this function is the signal of a limit switch for counter clockwise. If the input state is 1 the drive goes in STOP state.
- **DIR**: this function is the command to invert the Set Point
- **V/C**: this function is the command to change the mode profile velocity in torque profile and vice versa. The condition is processed when the drive is in standby state.

Note (*): the functions of limit switch must be set together. If the drive is configured with only one limit switch, then the drive sends a fault "programming error data set".

To have the drive with digital set points it needs to have at least a digital input configured by function SETVELx. Follow it is described the 4 combinations:

• <u>PRE-SET 1</u>: number 2 Digital Set Points.

smartris

Digital Inputs configuration: one digital input configured by RUN and one digital input configured by SETVEL1

The other 2 inputs free can be set by function: RESET, STOP, EN.EMRGY, DIR, DCW, DCCW (the limit switch must be configured together).

• <u>PRE-SET 2</u>: number 4 Digital Set Points.

Digital Input configuration: one digital input configured by RUN and two digital inputs configured by SETVEL1 and SETVEL2. The other input free can be set by function: RESET, STOP, EN. EMRGY, DIR.

• <u>PRE-SET 3</u>: number 8 Digital Set Points.

Digital Input configuration: one digital input configured by RUN and other digital inputs configured by SETVEL1, SETVEL2, SETVEL3. There is no one input available for other functions.

• <u>PRE-SET 4</u>: number 15 Digital Set Points.

Digital Input configuration: all digital inputs configured by SETVEL1, SETVEL2, SETVEL3 and SETVEL4. When all digital inputs are 0 is the command to move the drive from RUN state to STANDBY state, when any digital input change 1 then the drive moves in RUN. There is no one input available for other functions.

	CON	FIGURATION	I DIGITAL IN	PUTs		PRE	-SET	
				SETVEL1	1			
			SETVEL2	SETVEL1	2			
		SETVEL3	SETVEL2	SETVEL1	3			
Digital Set Points	SETVEL4	SETVEL3	SETVEL2	SETVEL1	4			
Dig. Set Point 0	0	0	0	0	-			
Dig. Set Point 1	0	0	0	1	1	2		
Dig. Set Point 2	0	0	1	0		2		
Dig. Set Point 3	0	0	1	1			2	
Dig. Set Point 4	0	1	0	0			- 3	
Dig. Set Point 5	0	1	0	1				
Dig. Set Point 6	0	1	1	0				4
Dig. Set Point 7	0	1	1	1				
Dig. Set Point 8	1	0	0	0				-
Dig. Set Point 9	1	0	0	1				
Dig. Set Point 10	1	0	1	0				
Dig. Set Point 11	1	0	1	1				
Dig. Set Point 12	1	1	0	0				

Smartris

Dig. Set Point 13	1	1	0	1
Dig. Set Point 14	1	1	1	0
Dig. Set Point 15	1	1	1	1

Note:

- 1. In pre-set configuration the input function V/C is forbidden because the presets are available only Velocity profile mode.
- 2. The function DCW and DCCW must be set together (these function can be set only for PRE-SET 1).
- 3. For PRE-SET 4 the Digital Set Point 0 is not available because this combination of digital inputs is the command to move in standby state.

Every digital input can be set with a different function available. It is not important the sequence of the function, it must to set the RUN function when the drive is configured in analog mode (except PRE-SET4). The word that defines the functions available is composed by bits, every bit describes the function:

BIT	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	-	-	-	DIR	VEL/CUR	SETVEL4	SETVEL3	SETVEL2	SETVEL1	DCCW	DCW	RST	EMGY	STOP	RUN

Where

Bit	Configuration
0	"RUN" (used only in Analog Mode): this input is the command to move the drive in RUN state.
1	"STOP" (used only in Analog Mode): this input is the command to move the drive in STOP state
2	"EMERGENCY INPUT ENABLE": when the option of digital input 3 is defined "Emergency Input Enable" this input is the command to move the drive in STANDBY state.
3	"RESET": when this function is enabled the input configured can put the drive in reset (it is an hardware reset). If the digital input is configured as reset, the reset has a filter with 100ms.
4	"DCW": this function is to configure the input with an actuator for clockwise. If the input state is 1 the drive goes in STOP state.
5	"DCCW": this function is to configure the input with an actuator for counter clockwise. If the input state is 1 the drive goes in STOP state
6	"SETVEL1" (used only in Analog Mode): This function is to configure the Set Point value defined by "File Parameters". If the digital inputs are set with this function, then the Set Points available are 2.
7	"SETVEL2" (used only in Analog Mode): This function is to configure the Set Point value defined by "File Parameters". If the digital inputs are set with the functions "SETVEL1" and "SETVEL2", then the Set Points available are 4.
8	"SETVEL3" (used only in Analog Mode): This function is to configure the Set Point value defined by "File Parameters". If the digital inputs were set with the functions "SETVEL1", "SETVEL2" and "SETVEL3", then the Set Points available are 8.
9	"SETVEL4" (used only in Analog Mode): This function is to configure the Set Point value defined by "File Parameters". If the digital inputs were set with the functions "SETVEL1", "SETVEL2", "SETVEL3" and "SETVEL4", then the Set Points available are 15. If this function is set then all digital inputs are used. When all dital inputs are 0 the drive is in STANDBY, to have the RUN function it needs to have at least one digital input as 1.
10	"VEL/CUR" (used only in Analog Mode): If the digital Input is selected with this function then the drive change the mode operation (Velocity Profile and Torque Profile), the function can be used only in standby state.
11	"DIR" (used only in Analog Mode): This function changes the direction of the motor. The set point changes the polarity.
	Table 15 – Programmable Inputs

^	Wa	rning
	•	RUN, STOP, SETVEL1, SETVEL2, SETVEL3, SETVEL4, DIR and V/C are functions for digital Input for Analog
_ •_	•	EMERGENCY INPUT ENABLE is the function to move the drive in "Switched On" state of DSP402 (or
		"STANDBY" state of the MSM of LSD) from the "Operation Enabled" state of DSP402 (or "RUN" state of the Macro State Machine of LSD). This command is used for emergency stop. See object 3008h "Emergency
		Enable Parameters

Entrée numérique (programmable)

^	Atte	ention
	•	RUN, STOP, SETVEL1, SETVEL2, SETVEL3, SETVEL4, DIR et V/C sont des fonctions pour l'entrée numérique
		dans le mode analogique.
	•	EMERGENCY INPUT ENABLE est la fonction permettant de déplacer le variateur dans l'état « Allumé » du
		DSP402 (ou « VEILLE » du MSM du LSD) depuis l'état « Fonctionnement actif » du DSP402 (ou « MARCHE »

Smartris User Guide - FW 2.3.1 Rel. 2.0a – 20.12.2022

de l'état de la macro Machine de LSD). Cette commande est utilisée pour l'arrêt d'urgence. Voir l'objet 3008h « Paramètres d'activation d'urgence ».

4.8.3 Digital Input Safety STO

DIG-STO: STO input follows the circuit

Picture 11 - STO Output FeedBack Relay

If an application requires controlled braking before using the STO function, the drive must be braked first and the STO function must be activate with a delay:

- 1. Controlled braking of drive
- 2. Once standstill is reached, disable the drive
- 3. In the case of a suspended load, mechanically lock the drive as well
- 4. Activate STO function.

STO de sécurité pour l'entrée numérique

^	Attention
	Le variateur ne peut pas maintenir la charge avec la fonction STO activée car le moteur ne fournit plus
	de couple.
	• Si la fonction STO est activée pendant le fonctionnement, le variateur s'arrêtera de manière
	incontrôlée.
	• Si le variateur possède la fonction Safety Torque OFF (STO), il convient de vérifier que ce circuit
	est correctement alimenté avant de démarrer ses fonctions.

Two input feedback

Every single output relay is read.

Safety controller can read every single command corresponding to every relay output: fully monitoring of safety functions. It is possible with CANopen DSP402 read the status of Digital Inputs with 0x60FD.

4.8.4 Digital Output

DIG-OUT1: shows if the drive is:

- `1' = Drive OK
- '0' = Drive in FAULT

DIG-OUT2 shows if the drive is:

- `1' = There is a Warning activate
 - `0' = No warning

DIG-OUT3 shows if the drive is:

- `1' = Motor is ready to move
- '0' = Motor is not ready to move

DIG-OUT4 shows the BRAKE status:

- `1' = brake released, motor axis free
- '0' = brake active, motor blocked

It is possible with CANopen DSP402 read the status of Digital Outputs with 0x60FE

4.9 Overload Management (I²T)

The Smartris Drive uses the I²t protection method to prevent motor winding and insulation damage caused by high motor temperature due to motor excessive work.

The I^2t algorithm evaluates the motor dissipating heat without any sensor. When the evaluated temperature exceeds the maximum, I^2t algorithm protects the motor placing the drive in Fault Overload

The I²t principal algorithm calculation is as follows:

Тр

Where:

- Ip motor peak current in rms
- In motor nominal current in rms

In

Tp – motor peak current time in seconds

It is possible with CANopen DSP402 read the status with the bit 11 of statusword (0x6041 object). During the limitation there is emergency message that describes when the drive is in Warning Limitation i2t for Over Load (error code 0x2351) and in alarm (error code 0x2350).

Picture 12 - I²T Management

Nominal current

Time

The Smartris Drive manage also 2 kind of Overload:

- Overload at low speed (default 30 rpm settable only by manufacturer)
- Protection to Overload close events

4.9.1 Overload at low speed (FW 2.0.1)

In Smatris drive there is a function to modify the Overload function depending by speed. Under a specific value the Energy is reduced. This means that at low speed the I²t time is reducing to half and the Rated Current is around 70% of the standard. At normal speed there is no effect.

It is possible with CANopen DSP402 read the status with the bit 11 of statusword (0x6041 object). During the limitation there is emergency message that describes when the drive is in Warning Limitation i2t for Over Load (error code 0x2351) and in alarm (error code 0x2350).

4.9.2 Overload with closer events (FW 2.0.1)

There is a function that prevent the drive goes to Run if numerous close I^2t events have occurred. After 2 consecutive Fault Overload Events it is necessary to wait one minute before enabling the drive, otherwise the drive will go into Fault I^2t Overload Protection (code 5,2)

It is possible with CANopen DSP402 read the alarm (error code 0x2352).

4.10 OVER SPEED (FW 2.2.6)

The drive has the alarm Over Speed (default set to 10% over the Maximum Limit Velocity defined).

5 | STO (SAFE TORQUE OFF)

smartris

Information In case of drive with STO it is possible to disable the Safety STO hardware connecting a +24Vdc between pin 12-35 (STO1) e 23-35 (STO2) on X2 connector

The Safety Circuit provides drive integrated safety function according to IEC 61800-5-2:2016. STO (Safe Torque Off) Module prevents the creation of torque in the motor and corresponds to a "*category* O" an uncontrolled stop in accordance with stop of IEC 60204-1. This means that the motor will coast to a stop when the "STO" function is activated, this method of stopping should be confirmed as being acceptable to the system the motor is driving.

The "STO" function is recognised as a fail safe method even in the case where the "STO" signal is absent and a single fault within the drive has occured.

The purpose of the "STO" function is to provide a method of preventing the drive from creating torque in the motor in the absence of the "STO" input signals (Terminal 12-23 with reference to 22), this allows the drive to be incorporated into a complete safety control system where "STO" requirements need to be fulfilled.

The "STO" function can typically eliminate the need for electro-mechanical contactors with cross-checking auxiliary contacts as per normally required to provide safety functions.

5.1 STO (Safe Torque Off)

Power, that can cause rotation (or motion in the case of a linear motor), is not applied to the motor. In STO condition, the drive will not provide power to the motor which cannot generate torque. Note:

- 1. This safety function corresponds to an uncontrolled stop
- 2. This function may be used where power removal is required to prevent an unexpected start-up.
- 3. In circumstances where external influences (i.e., falling of suspended loads) are present, additional measures (i.e., mechanical brakes) may be necessary to prevent any hazard.

5.1.1 STO Connection

	I/O SIGNAL						
PIN	SIGNAL	DESCRIPTION					
11	RET1	Safety Relays 1 (Output)					
12	STO1	Safety Relays STO1 (Input)					
22	COM_RET	Common Relays					
23	STO2	Safety Relays STO2 (Input)					
34	RET2	Safety Relays 2 (Output)					
35	STO_COM	Common STO1 / STO2 (Input)					
		Table 16 CTO Wiring					

Table 16 - STO Wiring

5.2 Hardware Specifics

STO Input	Data
STO Inactive status (Normal operation) Input voltage	2028 Vdc
STO Active (SAFETY) input voltage	< 2.4 Vdc
Input current (Typ)	29 mA
Active response time (time between normal operation to STO Active)	10 mS
Contact specification RET1, RET2 (rated voltage/current)	30V / 0.5A

Are available 2 separated inputs STO-1 e STO-2 with reference STO-COM, and 2 separated relays output (N.C.) RET-1 and RET-2, connected.

Input 1	Input 2	Output 1	Output 2	Output SW
ST01	STO2	RET1	RET2	STATUS
0	0	CLOSE	CLOSE	SAFETY
24V	0	OPEN	CLOSE	SAFETY
0	24V	CLOSE	OPEN	SAFETY
24V	24V	OPEN	OPEN	OPERATION MODE
				to

Table 17 - STO Output State

SAFETY status (no torque condition) is active when at least one input between STO1 and STO2 is 0V (not supplied).

5.3 Software Specifics

Picture 13 - STO Machine

5.4 Safe Operation Sequence Procedure

If an application requires controlled braking before using the STO function, the drive must be braked first and the STO function must be activate with a delay:

- 1. Controlled braking of drive
- 2. Once standstill is reached, disable the drive
- 3. In the case of a suspended load, mechanically lock the drive as well
- 4. Activate STO function.

Caution

The Smartris Drive cannot hold the load with the STO function activated because the motor no longer supplies any torque.

If the STO function is activated during operation, the drive will stop in an uncontrolled manner.

Procédure de fonctionnement sécurisé

 Attention

 Le variateur Smartris ne peut pas maintenir la charge avec la fonction STO activée car le moteur ne fournit plus de couple.

 • Si la fonction STO est activée pendant le fonctionnement, le variateur s'arrêtera de manière incontrôlée.

5.5 State Machine DSP402 with Safety State – CANopen Mode

The following picture shows the safety state. This state is added in the state machine DSP402. To exit by Safety State it is necessary to send the controlword with value "Disable Voltage".

Picture 14 - State Machine DSP402 with Safety State

😪 smartris 🛛

5.6 State Machine with Safety State – Analog/Modbus Mode

The following picture shows the safety state in Analog Mode

Dans certaines applications, des mesures supplémentaires peuvent être nécessaires pour répondre aux besoins de la fonction de sécurité du système : la fonction « STO » n'assure pas le freinage du moteur. Dans le cas où le freinage du moteur est requis, il convient d'adopter un relais de sécurité temporisé et/ou un dispositif de freinage mécanique ou une méthode similaire, il faut tenir compte de la fonction de sécurité requise lors du freinage, car le circuit de freinage du variateur seul ne peut pas être considéré comme une méthode sûre.

Smartris User Guide - FW 2.3.1

Example of Schematic Application 5.7

Picture 16 - STO Application

5.7.1 Two Input feedback

Every single output relay is read.

Safety controller can read every single command corresponding to every relay output: fully monitoring of safety functions.

Functional Check & Maintenance 5.8

The "STO" function should be included within the control systems scheduled maintenance program so that the function is regularly tested for integrity (Minimum once per 6 months), furthermore the function should be integrity tested following any safety system modifications or maintenance work.

Testing the "STO" Function

Verify that RET1 and RET2 behavior is congruent as in table below in every states.

Input 1	Input 2	Output 1	Output 2	Output SW
ST01	STO2	RET1	RET2	STATUS
0	0	CLOSE	CLOSE	SAFETY
24V	0	OPEN	CLOSE	SAFETY
0	24V	CLOSE	OPEN	SAFETY
24V	24V	OPEN	OPEN	OPERATION MODE

Before commissioning the system the "STO" function should always be tested for correct operation, this should include the following tests:

- With the motor at standstill, and a stop command given to the drive:
 - a.
 - De-energise the "STO" inputs (blink the led state 2) Give a run command (See chapter 4) that the operation is in SAFE b.
- With the motor running normally (from the drive)
 - a. De-energise the "STO" inputs
 - Check that the drive (blink the led state 2) and that the motor stops b.

•

6.1 CANopen Network Topology Overview

	CANOpen SIGNAL							
PIN	SIGNAL	DESCRIPTION						
19	GND_CAN	GND reference for CAN						
20	CAN_T	120 $Ω$ Termination resistance CAN (connect to CAN H)						
30	CAN_L	CAN_L Connection						
31	CAN_H	CAN_H Connection						

Table 18 - CANOpen Signal Wiring

All nodes of a network are principally connected in series, so that the CAN cable is looped through all controllers.

The two ends of the CAN cables have to be terminated by a resistor of $120\Omega + -5\%$. The CAN bus can be closed with a resistance terminator into to the drive using Pin 20. The CAN_T pin has to connect to CAN_H pin on Connector X1.

For cabling shielded cable with exactly two twisted pairs have to be used.

- One twisted pair is used for CAN-H and CAN-L.
- One twisted pair is used commonly for CAN-GND.

For further information refer to the Controller Area Network protocol specification, Ver. 2.0, Robert Bosch GmbH, 1991.

Technical data CAN bus cable:

- 2 twisted pairs, $d \ge 0,22 \text{ mm}^2$ shielded
- loop resistance < 0,2 Ω /m char.
- impedance 100-120 Ω

6.1.1 Server Relations

A CAN master (or client) is a controller that makes requests to nodes to respond to its commands. A CAN slave (or server) responds to the commands issued by the CAN master. The CAN protocol permits both single-master and multiple-master networks.

Smartris User Guide - FW 2.3.1

Information

The Lafert Servo Drive is the SLAVE and the machine controller or PLC is the MASTER.

Every servo drive has a unique ID in the range [1...127]. The network master does not require an ID. As a slave, the servo drive never sends an unrequested message, other than emergencies. The drive responds only to messages addressed to its ID or to broadcast messages, which have an ID of 0. All messages sent by a servo drive are marked with its own ID.

If two servo drives have been assigned the same ID, the CAN network may crash.

Aperçu topologique du réseau CANopen

Caution

Attention

Si deux servomoteurs ont reçu le même ID, le réseau CAN peut se bloquer.

6.1.2 CANOpen Baudrate & Node ID

- Baudrate set by a CANOpen (Default 1000K)
- Node ID set by software (Default 1)

6.2 General Features of CAN

Compliance with the directives CiA DS301 v4.02 and DSP402 v2.0:

- Communication Network set by CANOpen object
- NMT- Network Management Protocol
- SDO Service Data Object Protocol: upload, download and abort Protocol
- PDO Process Data Object (4 TPDO, 4 RPDO), event timer, granularity 8 bit
- Emergency Protocol
- Heartbeat and Node guarding (Monitoring Protocol)
- Store non volatile memory (communication + manufacturer + device profile)
- Restore default CanOpen from non volatile memory
- Input/Output management by CANopen Object
- State Machine according by DSP402
- Profile Mode p402 supported: Profile Velocity Mode (see object 0x6502)

6.3 Communication CANopen Object (COB)

The communication objects are standardized with the DS301 CANopen communication profile. The objects can be classified into 4 groups according to their tasks.

- PDOs (process data objects) for real-time transmission of process data
- SDOs (service data object) for read and write access to the object Dictionary
- Objects for controlling CAN messages:
 - SYNC object (synchronization object) for synchronization of network devices
 - EMCY object (emergency object), for signaling errors of a device or its peripherals.
- Network management services:
 - NMT services for initialization and network control (NMT: network management)
 - NMT Node Guarding for monitoring the network devices
 - NMT Heartbeat for monitoring the network devices

6.3.1 Object Dictionary

The most important part of a device profile is the Object Dictionary description. The Object Dictionary is essentially a grouping of objects accessible via the network in an ordered pre-defined fashion. Each object within the dictionary is addressed using a 16-bit index.

The general structure of the object dictionary is as follows:

ſ	Index, Sub-Index	OBJECT (Symbolic Name)	Name	Туре	Attribute	M/0
	(HEX)	(Symbolic Name)				

- **Index, Sub-Index:** The Index column denotes the objects position within the Object Dictionary. This acts as a kind of address to reference the desired data field. The sub-index is not specified here. The sub-index is used to reference data fields within a complex object such as an array or record.
- **Object:** The Object column contains the Object Name and is used to denote what kind of object is at that particular index within the Object Dictionary.
- **Name:** The name column provides a simple textual description of the function of that particular object.
- **Type:** The type column gives information as to the type of the object. Eg: Boolean, Floating number, Unsigned Integer, Signed Integer etc.
- **Attribute:** The Attribute column defines the access rights for a particular object. Eg: rw (read and write access), wo (write only), ro (read only), Const (read only and value is constant).
- **M/O:** The M/O column defines whether the object is **M**andatory or **O**ptional

The Standard object dictionary is as shown below:

Index (HEX)	Object
0000	Not used
0001-001F	Static data types
0020-003F	Complex data types
0040-005F	Manufacturer specific Complex data types
0060-007F	Device Profile Specific Static Data Types
0080-009F	Device Profile Specific Complex Data Types
00A0-0FFF	Reserved for further us
1000-1FFF	Communication Profile Area
2000-5FFF	Manufacturer Specific Profile Area
6000-9FFF	Standardized Device Profile Area
A000-FFFF	Reserved for further use

For communication between controller and Lafert Servo Drive the following communication objects (COB) are available.

Picture 18 - Communication between Master Controller and Drive

6.4 Network Management (NMT)

The Network Management (NMT) is node oriented and follows a master-slave structure. NMT objects are used for executing NMT services. Through NMT services, nodes are initialized, started, monitored, resetted or stopped. All nodes are regarded as NMT slaves. An NMT Slave is uniquely identified in the network by its Node-ID, a value in the range of [1 to 127].

NMT requires that one device in the network fulfils the function of the NMT Master.

6.4.1 NMT Services

- **Module Control Services:** Through Module Control Services, the NMT master controls the state of the NMT slaves. The state attribute is one of the values (STOPPED, PRE-OPERATIONAL, OPERATIONAL and INITIALISING). The Module Control Services can be performed with a certain node or with all nodes simultaneously.
- Error Control Service: Through Error control services the NMT detects failures in a CAN-based Network. Local errors in a node may e.g. lead to a reset or change of state. Error Control services are achieved principally through periodically transmitting of messages by a device. There exist two possibilities to perform Error Control i.e. Node Guard and Heart Beat Error Control.
- **Bootup Service:** Through this service, the NMT slave indicates that a local state transition occurred from the state INITIALISING to the state PRE-OPERATIONAL.

6.4.2 NMT state machine

The following picture shows the NMT state diagram of a CANopen device is specified.

CANopen devices enter the NMT state Pre-operational directly after finishing the CANopen devices initialization. During this NMT state CANopen device parameterization and CAN-ID-allocation via SDO possible. Then the CANopen devices may be switched directly into the NMT state Operational.

The NMT state machine determines the behaviour of the communication function unit.

The coupling of the application state machine to the NMT state machine is CANopen device dependent and falls into the scope of device profiles and application profiles.

(1) At Power on the NMT state initialisation is entered autonomously (2) NMT state Initialisation finished - enter NMT state Pre-operation automatically (3) NMT service start remote node indication or by local control (4),(7) NMT service enter pre-operational indication (5),(8) NMT service stop remote node indication
NMT state Initialisation finished - enter NMT state Pre-operationautomatically (3) NMT service start remote node indication or by local control (4),(7) NMT service enter pre-operational indication (5),(8) NMT service stop remote node indication
(3) NMT service start remote node indication or by local control (4),(7) NMT service enter pre-operational indication (5),(8) NMT service stop remote node indication
(4),(7) NMT service enter pre-operational indication (5),(8) NMT service stop remote node indication
(5),(8) NMT service stop remote node indication
(6) NMT service start remote node indication
(9),(10),(11) NMT service reset node indication
(12),(13),(14) NMT service reset communication indication

6.4.3 States and Communication Object Relations

Table below shows the relation between communication states and communication objects. Services on the listed communication objects may only be executed if the devices involved in the communication are in the appropriate communication states.

	Pre-operational	Operational	Stopped
PDO		х	
SDO	×	х	
SYNC	×	х	
TIME	×	×	
EMCY	×	х	
Node control and error control	х	х	х

6.4.4 Network Initialization Process

- STEP A): the device is in the node state PRE-OPERATIONAL which is entered automatically after power-on. In this state the devices are accessible via their default-SDO, the configuration of SDOs settings and optionally the setting of COB-IDs may be performed via SDO objects. In many cases a configuration is not even necessary as default values are defined for all application and communication parameters.
- STEP B): If the application requires the synchronisation of all or some nodes in the network, the appropriate mechanisms can be initiated in the optional Step B (now the SYNC feature is not implemented). It can be used to ensure that all nodes are synchronised by the SYNC object before entering the node state OPERATIONAL in step D. The first transmission of SYNC object starts within 1 sync cycle after entering the PRE-OPERATIONAL state.
- STEP C): In this step the Node guarding or Heartbeat can be activated using the guarding parameters configured in step A.
- STEP D): Now the master controller has to move the drive in OPERATIONAL state. With step D all nodes are enabled to communicate via their PDO objects.

6.5 SDO and PDO Protocol

The Lafert Drive can be parameterized via SDOs and controlled via PDOs.

6.5.1 Access via data Objects (PDO/SDO)

CANopen makes available a simple and standardised possibility for accessing the parameters of the Lafert Drive (i.e. Target Speed/profile Acceleration). A unique number (index and sub-index) is assigned to each parameter (CANopen obj). The totality of all adjustable parameters is contained in the object directory (OD) I

All objects are defined in EDS file (electronic Data Sheet).

There are 2 methods for accessing CANopen objects via the CAN bus:

- Access via Service data object (SDO): confirmed type of access where the Lafert Drive acknowledges every parameter access

Master Controller				SDC) (Re	eceiv	e)						Lafert Servo Driv	ve
SDO	[CAN-ID	DLC	B0	B1	B2	B3	B4	B5	B6	B7			
(Read command)	▶	600h+Id-node	8	40 h	Ind	dex	Sub	00h	00 h	00h	00h	/		
	7]	
	V	CAN-ID	DLC	B0	B1	B2	B3	B4	B5	B6	B7		SDO	
	\mathbb{N}	580h+Id-node	8	4xh	Inc	lex	Sub	Dat	а				(Confirmation)	
	_			SI	00 (Tran	smit)						

- Access via Process data objects (PDO): unconfirmed type of access for which no acknowledgement takes place.

The Receive PDOs default mappings are composed by controlword and set points values:

Ν	laster Controller	RPDOx (Receive)								_	Lafert Servo Drive		
	PDO	CAN-ID	DLC	B0	B1	B2	B3	B4	B5	B6	B7		
	Data (set-point values)	200h+1d-node 300h+Id-node 400h+Id-node 500h+Id-node	6 6 4 7	Contro Contro Contro Contro	olword, olword, olword, olword,	Mode Targe Targe Targe	Of Op t Posit t Veloc <u>t Tora</u>	eratior ion city ue	n, Dig (Output		/	
L													

The Transmit PDOs default mappings are composed by statusword and actual values:

Master Controller											Lafert Servo Drive
PDO	CAN-ID	DLC	B0	B1	B2	B3	B4	B5	B6	B7	
(Request)	180h+Id-node 280h+Id-node 380h+Id-node 480h+Id-node	RTR RTR RTR RTR				-					
			TPD	0x (1	Гran	smit)				
	CAN-ID	DLC	B0	B1	B2	B3	B4	B5	B6	B7	PDO
	180h+Id-node 280h+Id-node 380h+Id-node	6 6 4 7	Status Status Status	word, word, word,	Mode Actual Actual	Of Ope Positio Velocit	ration n y	Displa	y, Dig	Input	Data (actual values)

 Abort Code via Service data object (SDO): case of an error when reading or writing (for example, because the written value is too large), the Lafert Servo Drive answers with an error message instead of the acknowledgement.

The cause of the fault was returned to the data (Abort Code) as an error code.

Master Controller													Lafert Servo Drive
SDO (write or read		CAN-ID	DLC	B0	B1	B2	B3	B4	B5	B6	B7		
command)	•	600h+Id-node	8	Cmd	In	dex	Sub	Dat	а				
	V	CAN-ID	DLC	В0	B1	B2	B3	B4	B5	B6	B7		Abort Code
	Ν	580h+Id-node	8	80h	In	dex	Sub	Abo	ort Coo	le			Message

It is possible to change the default mapping because the drive supports the dynamic mapping. See the procedure into "Lafert – CANOpen Manual" document.

6.6 Emergency Protocol (EMCY)

The Lafert Servo Drive monitors the function of internal modules and of the firmware. Whenever an error occurs, the parameterised error response is initiated and the corresponding EMCY message is transmitted.

The latest error message is always stored here in Error Code object ($603F_h:0_h$). Also, it is in the highest error memory slot ($1003_h: 01_h$), the error memory always saves the 15 most recent error messages that can also be read out.

The Lafert Servo Drive also transmits an EMCY message once the error has been acknowledged.

The following status transitions are possible:

Trans ition	Cause	Description
0	Initialisation completed	There is no error. The drive sends the error code 0000_h (Error reset/No error) and the state of CAN (8170_h)
1	Error occurs	No error was present and a new error occurs. The drive goes to Fault State. Verify the diagnostic state and the Emergency message.
2	Error acknowledgment not successful	Not all causes of error have been remedied and an error acknowledgement was performed.
3	New error occurs	There is an error and a new error occurs. An EMCY message with the error code for the new error $(1003_h; 01_h, \text{ standard error field 1})$ is written.
4	Error acknowledgment successful	All causes of error have been remedied and an error acknowledgement was performed. The EMCY message was transmitted with error code 0000_h (Error reset/No error).

6.6.1 Emergency objects

The Lafert Servo Drive transmits an Emergency (EMGY) message whenever an error occurs.

The CAN identifier (CAN-ID) is 80_h + Id-node. The data message identifies one univocal Error Code, it defines the alarm occurred.

For referring the defines of alarm see the "Lafert – CANOpen Manual"

6.6.2 Sync Message

The SYNC object is a network wide system clock. It is the trigger for synchronous message transmission. The SYNC has a very priority and contains no data in order to guarantee a minimum jitter.

Heartbeat and Node Guarding 6.7

80h

--

There are two types of error control protocol: Node Guarding Protocol and Heartbeat protocol. It is important and mandatory to have one of monitor control for CAN communication safety.

Caution

DS301 recommends using heartbeat in the new implementations due to the sensible nature of Guarding using the RTR frames.

Message

Fonctions Heartbeat et Node Guarding

Attention DS301 recommande d'utiliser la fonction Heartbeat dans les nouvelles implémentations en raison de la nature sensible de la fonction Guarding utilisant les trames RTR.

6.7.1 Node Guarding Protocol

The guarding is achieved through transmitting guarding requests (Node guarding protocol) by the NMT Master. If a NMT Slave has not responded within a defined span of time (node life time) or if the NMT Slave's communication status has changed, the NMT Master informs its NMT Master Application about that event.

Master Controller											Lafert Servo Drive
	CAN-ID	DLC I	30 B1	l B2	B3	B4	B5	B6	B7		
	700h+Id-node	RTR	-								
									/	/	
		DIC	PO	D1	22			PC	P7		
	700h+Id-n	ode 1	state	- DI		55 D ²		DO	D7		◀
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $										

6.7.2 Heartbeat Protocol

The Heartbeat protocol is used to monitor the nodes in the network and verify that they are alive.

A heartbeat producer (usually a slave device) periodically sends at node id (700_h +Id-node). The data part of the frame contains a byte indicating the node status.

The heartbeat consumer reads these messages. If the messages fail to arrive within a certain time limit (defined in the object directory of the devices) the consumer can take action to, for example, reset the device or indicate an error. Frame format is: COBID + DATA (status of node)

A Heartbeat Producer transmits a Heartbeat message cyclically. One or more Heartbeat Consumer receives the message. The relationship between producer and consumer is configurable via the object dictionary.

Heartbeat has a default time at 200 ms (FW 2.2.6)

6.8 Store and Restore

The parameter sets contain all of the parameters required for operation.

6.8.1 Current parameter set (temporary)

The current parameter set is located in the main memory (RAM) of the Lafert Servo Drive. Via SDO the current parameter set can be written or read in any desiderated way.

Caution If there is an interruption in the power supply or a Reset command all changes to the current parameter set are lost. To save the parameter in the memory non volatile using the "Store Parameter" (1010_n: 00_n) object.

Jeu de paramètres actuel (temporaire)

Attention

En cas d'interruption de l'alimentation électrique ou d'une commande de réinitialisation, toutes les modifications apportées au jeu de paramètres actuel seront perdues. Sauvegarder le paramètre dans la mémoire non volatile à l'aide de l'objet « Enregistrer le paramètre » (1010_h: 00_h).

6.8.2 Default parameter set (Factory Settings)

The default parameter set is the standard parameter set of the Lafert Servo Drive provided by the manufacturer and it is unchangeable. Using the object "Restore all default parameters" (1011h: 01h) the default parameter set can be loaded into the current parameter set in main memory.

6.8.3 Application parameter set

The application parameter set is loaded into the current parameter set of the main memory automatically at every Power ON of the power supply. Using the object "Store parameters" (1010h: 01h) the current parameter set can be saved into the application parameter set in permanent memory.

6.9 Device Control

The Lafert Servo Drive is controlled by CANopen using the Finite State Machine by profile DSP402. State may changed using the *controlword* (6040_h) and/or according to internal events. The current state can be read using the *statusword* (6041_h).

6.9.1 Finite State Machine by DSP402

The device control is performed by a state machine according to DSP402.

State changes are triggered by internal events such as the occurrence of an error or external demand by means of *Controlword* (6040_h). *Statusword* (6041_h) gives feedback about the actual state.

After power-up and initialisation, the drive switches to the state "**Switch On Disabled**" automatically. In the state "**Operation Enabled**", the drive is fully operational.

State	Description
START	The status is left after Power ON or at a Reset node and it changes automatically into "ready to switch on" mode. An existing brake is closed.
NOT READY TO SWITCH ON	The CAN bus interface is initialised and the CAN bus communication is approved. The output stage is switched off An existing brake is closed.
SWITCH ON DISABLED	The CAN bus communication is enabled and from this status, parameters can be updated. Status transitions can only be controlled by commands or triggered by error events. The output stage is switched off. An existing brake is closed, or gets closed.
READY TO SWITCH ON	The output stage is switched off. An existing brake is closed, or gets closed.
SWITCHED ON	The output stage is switched on. An existing brake is opened, or gets opened.
OPERATION ENABLE	The drive is controlled in accordance with its parameterized operating mode (e.g. velocity task or set-point values). The output stage is switched on. An existing brake is opened.
QUICK STOP ACTIVE	The output stage is switched on. An existing brake is opened. The drive stops the motion and either stays in quick stop with torque applied.

🔳 😪 smartris i

FAULT ACTIVE	REACTION	An error has occurred. An existing brake is opened.
FAULT		An error has occurred. The drive remains in fault condition, until receives a Reset Fault.
		Table 19 – Finite State Machine by DSP402

The drive moves in the state SAFETY from all states. To exit by Safety State it is necessary to send the controlword with command "Disable Voltage".

6.9.2 Object parameters of device control

The following objects are available for the control state machine.

Index	Object	Name	Туре	M/O	Attr.	Description
6040 _h	VAR	controlword	UINT16	М	rw	This object shall indicate the received command controlling
						the PDS FSA.
6041 _h	VAR	statusword	UINT16	М	ro	This object shall provide the status of the PDS FSA.
6060 h	VAR	mode of operation	INT8	М	rw	This object shall indicate the requested operation mode
6041 _h	VAR	mode of operation display	INT8	М	ro	This object shall provide the actual operation mode.
603F	VAR	Error Code	U32	М	ro	This object shall provide the error code of the last error
						which occurred in the drive device.
60FD _h	VAR	Digital Inputs	U32	М	ro	This object shall provide digital inputs state.
60FE _h	VAR	Digital Outputs	U32	М	rw	This object shall command the digital outputs.

For object's management referring to "Lafert – CANOpen Manual" document.

6.10 Profile Mode Supported

Different operation modes are available with the CiA 402 profile.

The "Supported Drive Mode" object (6502_h) defines the profiles mode supported.

It is possible to change the profile using the "Mode of Operation" object (6060_h) for following profile:

- Mode (1) Profile position mode: it is not available yet.
- Mode (3) Profile velocity mode: *Reference velocity assignment by controller*
- Mode (4) Profile torque mode: Reference torque assignment by controller
- Mode (6) Homing Mode: *it is not available yet.*

The following profiles are supported but for using contact the manufacturer.

- Mode (-1) Analog Mode: the drive is controlled by serial command or hardware digital input
- Mode (-2) Profile Reserved

6.11 Profile Velocity Mode

This mode operates the motor in Velocity Mode with trapezoidal case. In the Profile Velocity operation mode the movement profile is defined by velocity and acceleration/decelerations commands. To activate the mode, the vale "3" must be set in "mode of operation" object (6060_h).

Object entries

The following objects are available for the control profile velocity and the behaviour of the drive.

Index	Object	Name	Туре	M/O	Attr	Description
					-	
60FF _h	VAR	Target Velocity	INT32	М	rw	This object shall indicate the configured target velocity and
						shall be used as input for the trajectory generator. The
						value shall be given in user-defined velocity units.
607F _h	VAR	Max Profile Velocity	UINT32	0	rw	This object shall indicate the configured maximal allowed
		-				velocity in either direction during a profiled motion.
6083 h	VAR	Profile Acceleration	UINT32	0	rw	This object shall indicate the configured acceleration. The
						value shall be given in user-defined acceleration units.
6084 _h	VAR	Profile Deceleration	UINT32	0	rw	This object shall indicate the configured deceleration. The
						value shall be given in user-defined acceleration units.
607E _h	VAR	Polarity	UINT8	0	rw	This object shall indicate if the position demand value shall
		-				be multiplied by 1 of by –1.
606Bh	VAR	Velocity Demand Value	INT32	0	ro	This object shall provide the output value of the trajectory
		-				generator. The value shall be given in the user-defined
						velocity units.

Smartris User Guide - FW 2.3.1

U						
606Ch	VAR	Velocity Actual Value	INT32	М	ro	This object shall provide the actual velocity value derived either from the velocity sensor or the position sensor. The value shall be given in user-defined velocity units.
606D _h	VAR	Velocity Window	UINT16	0	rw	This object shall indicate the configured velocity window. The value shall be given in userdefined velocity units.
606Eh	VAR	Velocity Window Time	UINT16	0	rw	This object shall indicate the configured velocity window time. The value shall be given in milliseconds.
606Fh	VAR	Velocity Threshold	UINT16	0	rw	This object shall indicate the configured velocity threshold. The value shall be given in userdefined velocity units
6070 _h	VAR	Velocity Threshold Time	UINT16	0	rw	This object shall indicate the configured velocity threshold time. The value shall be given in milliseconds.

6.11.1 Velocity Profile Operation Mode:

In the Profile Velocity operation mode, the movement profile is defined by velocity and acceleration/decelerations commands.

To initiate a velocity-controlled profile:

- Switch the operation mode to Profile Velocity mode by writing 3 to object 6060h.
- Enable operation.

Rsmartris

- Set acceleration/deceleration in object 6083h/6084h, respectively.
- Start motion by setting the target velocity in object 60FF_h.

Target velocity can be changed on-the-fly during motion. The profile acceleration/deceleration can be changed in run time, the others objects must be saved in e²prom.

The motion ends when one of the following conditions is met:

- Target velocity is set to 0
- Stop caused by Halt or Quick Stop
- Stop caused by an error

6.11.2 Controller structure

Diagrams Profile Velocity Mode

See picture below to the flow chart of running sequence

Picture 19 - CANOpen Run Sequence

- 1) Switch ON Power Supply
- 2) Verify LED Status 1/2 in INIT Mode
- 3) Configure Profile Velocity $0x6060 \rightarrow 0x03$
- 4) Set **READY TO SWITCH ON** State: write Control Word $0x6040 \rightarrow 0x06$
- 5) Set **SWITCHED ON** State: write Control Word $0x6040 \rightarrow 0x07$
- 6) Verify that the Smartris Drive is in SWITCHED ON: read Status Word $0x6041 \rightarrow 0x23$

7) Set **OPERATION ENABLED** State: write Control Word $0x6040 \rightarrow 0x0F$

Smartris User Guide - FW 2.3.1

- 8) Verify LED STATUS ENABLED
 Verify that the Smartris Drive is in ENABLED: read Status Word 0x6041 → 0x27
 Verify that the brake is released
- 9) Write Speed Set Point: $0x60FF \rightarrow 0x03e8$ (for example set 1000 rpm)
- 10) Verify if the motor is running
 Verify the motor speed (after ramp): read 0x606C→ 0x03e8 (for example set 1000 rpm)

NOTES:

- The STO (SAFETY) command may can stop the running command immediately
- The **Stop** Command can stop the running command immediately
- A **FAULT** (see table in Diagnostic) can stop the running command immediately

6.12 Torque Profile

In the profile Torque operating mode the motor executes a movement according to a target torque or current sent by the master controller. The current regulator (torque control) is specified a current proportional to the target torque.

Object entries

The following objects are available for the control profile velocity and the behaviour of the drive.

Index	Object	Name	Туре	M/O	Attr	Description
6071 h	VAR	Target torque	INT16	Μ	rw	This object shall indicate the configured input value for the torque controller in profile torque mode. The value shall be given per thousand of rated torque.
6087h	VAR	Torque slope	U32	М	ro	This object shall indicate the configured rate of change of torque. The value shall be given in units of per thousand of rated torque per second.
6088 _h	VAR	Torque profile type	INT16	0	rw	This object shall indicate the configured type of profile used to perform a torque change.
6073 _h	VAR	Max current	U16	0	rw	This object shall indicate the configured maximum permissible torque creating current in the motor.

Smartris User Guide - FW 2.3.1

U						
6075 _h	VAR	Motor rated current	U32	0	rw	This object shall indicate the configured motor rated current. It is taken from the motor's name-plate. Depending on the motor and drive technology, this current is DC, peak or r.m.s. (root- mean-square) current. All relative current data refers to this value. The value shall be given in mA.
6077 h	VAR	Torque actual value	116	0	ro	This object shall provide the actual value of the torque. It shall correspond to the instantaneous torque in the motor. The value shall be given per thousand of rated current.
6078 h	VAR	Current actual value	116	0	ro	This object shall provide the actual value of the current. It shall correspond to the current in the motor. The value shall be given per thousand of rated current. This value is filtered.
6079 h	VAR	DC link circuit voltage	U32	0	ro	This object shall provide the instantaneous DC link current voltage at the drive device. The value shall be given in mV.
6074 _h	VAR	Torque demand	116	0	ro	This object shall provide the output value of the trajectory generator. The value shall be given per thousand of rated torque.
60E0h	VAR	Positive torque limit value	U16	0	rw	This object shall indicate the configured maximum positive torque in the motor. The value shall be given percent of rated current. Positive torque takes effect in the case of motive operation is positive velocity or regenerative operation is negative velocity
60E1 _h	VAR	Negative torque limit value	U16	0	rw	This object shall indicate the configured maximum negative torque in the motor. The value shall be given percent of rated current. Positive torque takes effect in the case of motive operation is positive velocity or regenerative operation is negative velocity

Diagrams Torque Profile:

🐼 smartris

The type of profile can be set by "Torque Profile Type" (6088h):

- Value "-1": Immediately
- Value "0": Linear Ramp.

Torque Profile Operation Mode:

In the Profile Torque operation mode, a movement is made with a specified target torque. To initiate a torque-controlled movement:

- Switch the operation mode to Profile Torque mode by writing 4 to object 6060h.
- Enable operation.
- Start motion by setting the target torque in object 6071h.

Target torque can be changed on-the-fly during motion. The Torque slope can be changed in run time, the others objects must be saved in e²prom.

The motion ends when one of the following conditions is met:

- Target torque is set to 0
- Stop caused by Halt or Quick Stop
- Stop caused by an error

6.13 SinCos Management

Object CAN 3004: SinCos Management (Single/Multi turn)

Sub	Name		Description
Index			
1	Feedback Type	ro	0 = resolver, 1 = encoder, 2 = SinCos
2	Pulse/gear	ro	This object shall indicate the configured rate of change of torque. The value shall be given in units of per thousand of rated torque per second.
3	Absolute position L (initial) - 16 bit LSB	ro	Example: $pos = 0x297421$ value = $0x7421$
4	Absolute position H (initial) - 16 bit MSB	ro	Example: pos = 0x297421 value = 0x0029
5	Absolute position L (actual) - 16 bit LSB	ro	See note (1) – Absolute position is 24 bit for multi turn / 12 bit for single turn
6	Absolute position H (actual) - 16 bit MSB	ro	See note (1) – Absolute position is 24 bit for multi turn / 12 bit for single turn
7	Encoder Type	ro	(Singleturn = 0x32, Multiturn = 0x37)
8	Reserved	ro	
9	Reserved	ro	
10	Encoder Command	wo	See note (3)
11	Initial gear number	ro	(12 bit)
12	Relative position (initial)	ro	(12 bit) Example: pos = 0x297421 N° of gear = 0x0421
13	Reserved	ro	
14	Reserved	ro	
15	Reserved	ro	

Note:

- 1) At the beginning initial and actual position are the same. Actual position is updated only after a read position command (see note 3)
- 2) In the 8 bit LSB there is internal error code
- 3) Encoder Command:
 - 1. READ ENCODER STATUS (encoder status)
 - 2. READ OUT NAME PLATE (Encoder Type)
 - 3. Reserved
 - 4. READ POSITION (actual position)

7 | MODUS COMMUNICATION

7.1 RS485 - Modbus Communication Settings

WRITE SINGLE HOLDING REGISTER (0x06) / READ HOLDING REGISTERS (0x03)

Physical Address

smartris

Variable	Address (WR)	Default Value	Choice
Address	0x0028	1	1 ÷ 247

Baud Rate

Variable	Address (WR)	Default Value	Choice
BaudRate	0x0035	192 -> 19200	96 → 9600
			192→ 19200
			384 → 38400
			576 → 57600
			1152 → 115200

COM Settings

Variable	Address (WR)	Default Value	Choice
Parity / Stop Bits / Data	0x002B	0 → NO Parity / 2 Stop Bits /	0 → NO Parity / 2 Stop Bits / 8 Data Bits
Bits		8 Data Bits	1 → ODD Parity / 1 Stop Bit / 8 Data Bits
			2 – EVEN Parity / 1 Stop Bit / 8 Data Bits

$\boldsymbol{\wedge}$	Info
	The Modbus Address is the physical address and depends if there are more devices togheter. The modifies of Baudrate or Parity can cause communication issues. They depend to Hardware
	In case of sending different value drive gives the Exception Code 0x03

Picture 20 – Modbus Connection

7.2 List of Read Input Registers

		READ FROM DRIVE (0x04)	UNIT
HEX	DEC		
0x0042	66	SPEED SETPOINT	[RPM]
0x0047	71	CURRENT TOROUE SETPOINT	[Arms / 100]
0x005E 94		DIGITAL INPUTS	
0X005F	95	DIGITAL OUTPUTS	
0x0060	96	DRIVE STATUS	
0x0061	97	WARNING CODE LOW	
0x0062	98	WARNING CODE HIGH	
0x0063	99	ERROR CODE	
0x0064	100	BUS DC LINK	[V / 100]
0x0065	101	MOTOR TEMPERATURE	[°C / 10]
0x0066	102	HEAT-SINK TEMPERATURE	[°C / 10]
0x0067	103	BOARD TEMPERATURE	[°C / 10]
0x0068	104	MOTOR SPEED	[RPM]
0x0069	105	TOROUE CURRENT	[A / 100]
0x006A	106	I2T ENERGY VALUE	[%]
0x006B	107	AXIS POSITION LOW	[Pulse]
0x006C	108	AXIS POSITION HIGH	[Pulse]
0X006D	109	IMPULSES	[Pulse]
0X006E	110	FILTERED VELOCITY	[RPM]
0x006F	111	TO CURRENT WIND	[Arms]
0x0070	112	VOLT REFERENCE (ANALOG INPUT)	
0x0100	256	FEEDBACK TYPE	
0x0101	257	FEEDBACK RESOLUTION	
0x0102	258	FEEDBACK INIT POSITION LOW	
0x0103	259	FEEDBACK INIT POSITION HIGH	
0x0104	260	FEEDBACK ACTUAL POSITION LOW	
0x0105	261	FEEDBACK ACTUAL POSITION HIGH	
0x0106	262	FEEDBACK ENCODER TYPE	
0x0107	263	RESERVED	
0x0108	264	RESERVED	
0x0109	265	FEEDBACK INIT ROUNDS	
0x010A	266	FEEDBACK INIT RELATIVE POSITION	
0x010B	267	RESERVED	
0x010C	268	RESERVED	
0x010D	269	ANALOG OUTPUT VALUE DAC	
0x0110	272	DIGIN 1 STATE	
0x0111	273	DIGIN 2 STATE	
0x0112	274	DIGIN 3 STATE	
0x0113	275	DIGIN 4 STATE	
0x0114	276	DIGOUT 1 STATE	
0x0115	277	DIGOUT 2 STATE	
0x0116	278	DIGOUT 3 STATE	
0x0117	279	DIGOUT 4 STATE	

Table 20 – List of Modbus Read Input Registers

7.3 List of Read Holding Registers

	READ ONLY (0x03)		UNIT	DEFAULT VALUE	
HEX	DEC				
0x0001	1	CONTROL WORD		0	
				Depends by motor: • L=3000 • M=4500	
0x0003	3	FULL SCALE VELOCITY	[RPM]	• S=4500	
0x0028	40	MODBUS ADDRESS		1	
0x002B	43	COM SETTINGS		0	
0x0035	53	MODBUS BAUD RATE		192	
0x0036	54	COMMUNICATION LOSS TIME		1	
0x003C	60	PID VELOCITY KP	[IU]	Depends by motor	
0x003D	61	PID VELOCITY KI	[IU]	Depends by motor	
0x003E	62	PID VELOCITY KV	[IU]	Depends by motor	
0x003F	63	SPEED RAMP STATE		1 : Ramp enabled	
0x0040	64	SPEED RAMP UP	[ms]	2000	
0x0041	65	SPEED RAMP DOWN	[ms]	2000	
0x0043	67	SPEED POLARITY		0	
0x0044	68	LIMIT TORQUE POSITIVE	[%]	100	
0x0045	69	LIMIT TORQUE NEGATIVE	[%]	100	
0x0046	70	SLOPE RAMP (TORQUE)	[rated current / (1000 * s)]	1000	
0x004E	78	BRAKE MANAGED		1	
0x004F	79	BRAKE MODE		1	
0x0050	80	BRAKE TYPE		Depends by motor: • Magnetic Brake = 1 • Spring Brake = 2	
0X0051	81	DYNAMIC STOP ENABLE		1	
0X0053	83	READ CONFIG ANALOG OUTPUT			
0X0054	84	AN. OUTPUT VALUE (GEN PURPOSE)			
0X0055	85	DYNAMIC STOP STEP RAMP	[rpm*100/sec]		
0X0056	86	SPEED VELOCITY FILTERED			
0X0080	128	DIGIN 1 CONFIG		See User Guide	
0X0081	129	DIGIN 2 CONFIG		See User Guide	
0X0082	130	DIGIN 3 CONFIG		See User Guide	
0X0083	131	DIGIN 4 CONFIG		See User Guide	
0X0084	132	DIGOUT 1 CONFIG		See User Guide	
0X0085	133	DIGOUT 2 CONFIG		See User Guide	
0X0086	134	DIGOUT 3 CONFIG		See User Guide	
0X0087	135	DIGOUT 4 CONFIG		See User Guide	
0X0088	136	DIGIN 1 LEVEL		0 = OFF / 1 = ON	
0X0089	137	DIGIN 2 LEVEL		0 = OFF / 1 = ON	
0X008A	138	DIGIN 3 LEVEL		0 = OFF / 1 = ON	
0X008B	139	DIGIN 4 LEVEL		0 = OFF / 1 = ON	
0X008C	140	DIGOUT 1 LEVEL		0 = OFF / 1 = ON	
0X008D	141	DIGOUT 2 LEVEL		0 = OFF / 1 = ON	
0X008E	142	DIGOUT 3 LEVEL		0 = OFF / 1 = ON	
0X008F	143	DIGOUT 4 LEVEL		0 = OFF / 1 = ON	
0x01FF	511	FW RELEASE CUSTOMER		Depends by FW release	
0x0201	513	HW RELEASE		 12 if STO 22 if NO STO 	
Smartris Use	er Guide - FW 2.	3.1		UAFERTDRIVES	

Rel. 2.0a – 20.12.2022

0x0202	514	PARAMETER RELEASE		Depends by parameter release
				Depends by motor type:
0v0203	515	MOTOR TYPE		 0 = None, 1 = B40, 2 = B63, 3 = B71, 100-RESERVED
0,0205	515	MOTORTIL		• $1 \rightarrow \text{STO present}$
0x0204	516	STO CHECK		• 2 \rightarrow NO STO
				 0 → Resolver 1 → Incr Encoder
0x0205	517	FEEDBACK		• $2 \rightarrow$ SinCos Encoder
0x0207	519	OPERATION MODE		 1 → Torque mode 2 → Velocity mode
0x0208	520	READ MOT POLES		Motor poles couple
0x0209	521	MOTOR TEMP SENSOR		
0x020A	522	MAX MOTOR SPEED	[rpm]	

Table 21 – List of Modbus Read Holding Registers

7.4 List of Write Single Holding Registers

		WRITE PARAMETERS (0x06)	UNIT	
HEX	DEC			
0×0000	0	STORE E2PROM		
0x0001	1	CONTROL WORD		
0x0028	40	MODBUS ADDRESS		
0x002B	43	COM SETTINGS		
0x0035	53	MODBUS BAUD RATE		
0x0036	54	COMMUNICATION LOSS TIME	[ms]	
0x003C	60	PID VELOCITY KP	[IU]	
0x003D	61	PID VELOCITY KI	[IU]	
0x003E	62	PID VELOCITY KV	[IU]	
0x003F	63	RAMP ENABLE		
0x0040	64	SPEED RAMP UP TIME	[ms]	
0x0041	65	SPEED RAMP DOWN TIME	[ms]	
0x0042 66		SPEED SETPOINT	[RPM]	
0x0043	67	SPEED POLARITY		
0x0044	68	LIMIT TORQUE POSITIVE	[%]	
0x0045	69	LIMIT TORQUE NEGATIVE	[%]	
0x0046	70	SLOPE RAMP (TORQUE)	[Rated current / (1000 * s)]	
0x0047	71	CURRENT TORQUE SETPOINT	[Arms / 100]	
0x004E	78	BRAKE MANAGED		
0x004F	79	BRAKE MODE		
0X0051	81	DYNAMIC STOP ENABLE		
0X0052	82	SET CMD REQ FEEDBACK		
0X0053	83	CONFIG ANALOG OUTPUT		
0X0054	84	SET ANALOG OUTPUT VALUE (GEN PURPOSE)		
0X0055	85	DYN STOP STEP RAMP		
0X0207	519	OPERATION MODE		
0x5A5A	23130	RESTORE MANUFACTURER DATA		
0xA5A5	42405	RESET DRIVE		

Table 22 – List of Modbus Single Write Holding Registers

7.5 List of Exception Code

In Modbus protocol there are some Exception Code for error in Communication values:

	Exception Code on Modbus Communication				
Exception Code	Name	Meaning			
0x01	Illegal Function	The function code received in the request is not an authorized action for the slave. The slave may be in the wrong state to process a specific request.			
0x02	Illegal Data Address	The data address received by the slave is not an authorized address for the slave.			
0x03	Illegal Data Value	The value in the request data field is not an authorized value for the slave.			

Table 23 – List of Modbus Exception Code

Info In this chapter there are only the lists of Modbus Parameters. To see the descriptions of all parameters and hot to use them see Lafert Modbus Manual

7.6 Run Sequence

- 1) Switch ON Power Supply [**T0**]
- 2) Wait Standby (SWITCHED ON) State [T1]
- 3) Verify Operation Mode by reading [func. 0x03 addr. 0x0207] Operation Mode:
 - Value equal to $1 \rightarrow$ Torque Mode
 - Value equal to 2 → Velocity Mode

Warning

If the customer wants to switch from Torque Mode to velocity Mode or vice-versa he must set it by write to [func.06 – addr.0x0207] Operation Mode.

To make changes effective, the customer must first save to memory with command [func.06 – addr. 0x0000] Store E2PROM Data and then reset drive with command [func.06 – addr.0xA5A5] System Reset.

Attention

Si le client souhaite passer du mode couple au mode vitesse ou vice-versa, il doit le définir en écrivant sur [func.06 – addr.0x0207] Mode de fonctionnement.

Pour que les modifications soient effectives, le client doit d'abord enregistrer en mémoire avec la commande [func.06 – addr. 0x0000] Stockez les données E2PROM, puis réinitialisez le lecteur avec la commande [func.06 – addr.0xA5A5] Réinitialisation du système.

- 4) Verify that the Smartris Drive is in SWITCHED ON
- 5) Set **OPERATION ENABLED** State : write [0x06] Control Word \rightarrow 0x0001 = 0x0003 [**T2**]
- 6) Verify LED STATUS ENABLED
 - Verify by read [func. 0x03 addr.0x0060], that the Smartris Drive is in ENABLED [Drive Status = 0x0001 \rightarrow RUN)]
 - Verify that the brake is released
- 7) If [func. 0x06 addr. 0x0207] Operation Mode = 2 Velocity mode \rightarrow Write to [func.0x06 addr. 0x0042] Speed Set Point \rightarrow i.e. 0x03e8 (1000 \rightarrow 1000 rpm)

If [func. 0x06 - addr. 0x0207] - Operation Mode = 1 - Torque mode \rightarrow Write to [func.0x06 - addr. 0x0047] Torque Set Point \rightarrow i.e. 0x03e8 (1000 \rightarrow 10 Arms)

8) Verify if the motor is running

Smartris User Guide - FW 2.3.1

- Verify the motor speed (after ramp) by read to [func. 0x04 addr. 0x0068] Motor Speed
- Verify the motor current by read to [func. 0x04 addr. 0x0069] Torque Current
- 9) Stop the motor with Stop Command → write to [func. 0x06 addr. 0x0001] Control Word → 0x0001 [T4] Drive goes immediately in Stop state with MAX torque (it's equal to a QUICK STOP command).

If you want to Stop the motor with ramp, just write to [func.06 – addr.0x0042] Speed Set Point the value 0 (0 rpm).

Stop the motor with Standby Command \rightarrow write to [func. 0x06 - addr. 0x0001] - Control Word \rightarrow 0x0002 [**T4**] – Drives goes in Standby state.

Warning Broadcast communication it is not implemented

RTU Mode - Bits per Byte

Start Bit	Data Bits	Data Bits Parity	
1	8 data bits, least significant bit	1 bit for even / odd	1 stop bit if parity is used-2 bits if
	sent first	parity-no bit for no parity	no parity

7.7 Examples: Change Modbus Communication Settings

	Warning
	The Modbus doesn't allow more devices with same address To Change Address it is mandatory connect one drive on the time with Master Controller

7.7.1 Change Address Sequence

In case of more devices connected it is necessary to change the address of devices (default value 1).

Variable	Address (WR)	Default Value	Choice
Address	0x0028	1	1 ÷ 247

Example: change address from 1 to 2

In this case connect the Drive where is necessary to change the address (0x0028) from 1 to 2:								
Address	Function	Address (W	R)	Data		CRC		
01	06	00	28	00	02	16 bit		

Save to EEProm (0x0000)

Address	Function	Address (WR)		Data	CRC	
01	06	00	00	00	01	16 bit

System Reset (0xA5A5)

Address	Function	Address (W	Address (WR)		Data		
01	06	A5	A5	00	01	16 bit	

After this procedure the drive has Modbus Address set at 2

7.7.2 Change Baud Rate Sequence

Example: In case is necessary to change the Baud Rate (0x0035) from 19200 (default) to 9600 (96 = 0x60):

Address	Function	Address (WR)		Data		CRC
01	06	00	35	00	60	16 bit

Save to EEProm (0x0000)

Address	Function	Address (WR)		Data	CRC	
01	06	00	00	00	01	16 bit

System Reset (0xA5A5)

Smartris User Guide - FW 2.3.1

Rel. 2.0a – 20.12.2022

名 sma	artris 🗖							
Address	Function	Address (W	R)	Data		CRC		
01	06	A5	A5	00	01	16 bit		

After this procedure the drive has Modbus Baud Rate is set at 9600

7.7.3 Change COM Setting Sequence

Example: In case is necessary to change the COM Setting (0x002B) from 0 (default) to 1 (1 \rightarrow ODD Parity / 1 Stop Bit / 8 Data Bits):

01 06 00 2B 00 01 16 bit	Address	Function	Address (W	Address (WR)		Data	
	01	06	00	2B	00	01	16 bit

Save to EEPron	Save to EEProm (0x0000)									
Address	Function	Address (WR)		Data	CRC					
01	06	00	00	00	01	16 bit				

System Reset (0xA5A5)

Address	Function	Address (WR)		Data	CRC	
01	06	A5	A5	00	01	16 bit

After this procedure the drive has Modbus COM Setting is set at $1 \rightarrow$ ODD Parity / 1 Stop Bit / 8 Data Bits * depends by COM Settings (0x002B)

8 | MEASURING UNIT CONVERSION

smartris

The drive can be used in different applications. Internal values are entered and calculated in increments, they are dependent on the resolution of the feedback used. The user parameters are defined in increments as default. For setting parameters easily in different applications it is possible to convert the user unit in other units.

Picture 21 - Factory group

It defines [u.u.] as user unit and [i.u.] as internal units.

Picture 22 - Factory group units

The values of the Velocity Factory Group and Acceleration Factory group are used to convert internal values of speed and acceleration parameters into user-defined units.

Smartris User Guide - FW 2.3.1

The Velocity Factor group is composed by numerator and divisor and it has to be entered separately.

$$Velocity \ Factor = \frac{Numerator}{Divisor}$$

The default value of user unit of velocity is [inc/s]: the numerator and the divisor are set "1".

$$Velocity[i.u.] = Velocity[u.u.] \times \left(\frac{Numerator}{Divisor}\right)$$

The Acceleration Factor is composed by numerator and divisor and it has to be entered separately.

Acceleration Factor
$$= \frac{Numerator}{Divisor}$$

The default value of user unit of acceleration is [inc/s²]: the numerator and the divisor are set "1".

$$Acceleration[i.u.] = Acceleration[u.u.] \times \left(\frac{Numerator}{Divisor}\right)$$

smartris

Mise en garde

Le variateur a comme unité par défaut les incréments. Pour changer les unités, voir la procédure. Après le changement des unités, il est obligatoire de modifier également certains objets (p. ex. accélération/décélération du profil, accélération/décélération max., etc.).

8.1 Measuring Unit Conversion Parameters

In CANopen it is possible to change the user unit group using these objects

Index	Object	Name	Туре	M/O	Attr.	Description
6096	VAR	Velocity Factor	UINT32	М	rw	This object can be used to match the velocity units to the user-
0050n						defined velocity units
6007	VAR	Acceleration Factor	UINT32	Μ	rw	This object can be used to match the acceleration units to the user-
0097h						defined acceleration units.

For object's management referring to "Lafert – CANOpen Manual" document.

Table Conversion

FEEDBACK	Velocity	Factor	Velocity	Acceleratio	n Factor	Acceleration
Resolution	NUM	DIV	[u.u]	NUM	DIV	[u.u]
4096	1	1	[inc/s]	1	1	[inc/s ²]
000	4096	60	[RPM]	4096	60	[RPM/s]
16384	1	1	[inc/s]	1	1	[inc/s ²]
10504	16384	60	[RPM]	16384	60	[RPM/s]

9 | DIAGNOSTIC

There are 2 leds on right of the top:

- the **GREEN Led** (Status 1) is on upper side and shows the status 1 of the drive
- the **YELLOW Led** (Status 2) is down side and shows the status 2 of the drive

MACRO DRIVE STATE	CANOpen STATE	STATUS 1 LED GREEN	STATUS 2 LED YELLOW	LED VIEW
TNIT	Not Ready To Switch On	"BLINK" simultaneously	"BLINK" simultaneously	 1 simultaneously 2 simultaneously
	Switch On Disabled Ready to Switch On	"BLINK" alternately	"BLINK" alternately	1 alternately 2 alternately
STANDBY	Switched On	"BLINK"	OFF	1 BLINK 50% 2 OFF
FAULT	Fault Fault reaction fault	"BLINK" [x]	"BLINK" [y]	1 see fault 2 chapter
RUN	Operation Enabled	ON	OFF	● 1 ON ◎ 2 OFF
STOP	Quick Stop Active	ON	ON	1 ON 2 ON
SAFETY	-	OFF	"BLINK"	1 OFF 2 BLINK
COMMUNICATION CAN ERROR	-	OFF	ON	 0FF 2 ON

Table 24 - LED Status - Diagnostic

To connect drive to laptop by RS232 and read diagnostic or parameter with Lafert Tools use an USB to RS232 interface is needed and one suggested is: - Chipi-X10 Cables (FTDI Manufacturer)

https://www.ftdichip.com/Products/Cables/USBRS232.htm

¹ Contact Manufacturer

🔳 😪 smartris i

Smartris User Guide - FW 2.3.1

Rel. 2.0a – 20.12.2022

Alarm	STATUS 1 CODE LED GREEN	STATUS 2 CODE LED YELLOW	Alarm Description	
	💠 🛛 1st Code	🔶 2nd Code		
A Group: (Tempera	ature)			
Motor Over Temperature	1	10	Motor Temperature over threshold Motor has reached a too high temperature for correct operation. (>140°C)	
Heat Sink Over Temperature	1	1	Heat Sink Temperature over threshold. Heat Sink has reached a too high temperature for correct operation. (> 75°C)	
Heat Sink Temp Out Of Range	1	3	Heat Sink Temperature Sensor is out of range. Potential malfunction of the temperature sensor. ¹	
Board Over Temperature	1	4	Internal Board Temperature over threshold. (>68°C) Too high a temperature for correct operation inside the drive.	
Board Temp Out Of Range	1	5	Internal Temperature Sensor out of range. Potential malfunction of the temperature sensor. ¹	
Motor Temp Out	1	6	Motor Temperature Sensor is out of range.	
B Group: (Feedbac	. (k)		Potential manufiction of the temperature sensor.	
Resolver	2	10	Check resolver connections, connectors and wiring of both sides.	
Resolver Init	2	4	Initialization Fault for Resolver Device, ¹	
Encoder	2	5	Incremental Encoder Fault	
SinCos Fault	2	6	SinCos Encoder Fault	
Hall	2	7	Hall Sensors Fault	
Distance Hall	2	8	Hall Sensors Fault	
C Group: (Current)				
Offset Current	2	10	Offset surrent conser is out of range 1	
Sensor	3	10		
Over Current	3	1	The current absorbed by the motor is beyond the set limit. Check Phase Motor connection and wire. Look for any short circuits.	
D Group: (Voltage)			
Under Voltage	4	1	DC Bus voltage value lower than the limit threshold. Check mains voltage at terminals +,	
Over Voltage	4	2	DC Bus voltage value higher than the limit threshold. Check mains voltage at terminals +, -	
E Group: (Function	nality)			
Velocity Fault	5	10	The actual speed differs from the target Speed.	
I ² T Overload Protection	5	2	I2T overload motor protection reached.	
Hardware	5	3	Error Hardware ¹	
External HW	5	4		
OverSpeed	5	8	Overspeed error - CAN	
F Group: (Commu	nication)	-		
E ² prom	6	1	Parameter Fault stored in E2prom.	
CanOpen Cinces Fault	6	2	Communication Fault with CANOpen	
Configuration	6	3	Configuration Parameters Fault ¹	
Parameters	6	F	Error Configuration Profiles Made Of Operation	
Torque Brofile	6	5	Error Torque Drofile	
Volocity Profile	6	7	Error Valacity Drofila	
Homing Profile	6	8	Error Homing Profile	
Configuration Par	ameters	<u> </u>		
Program Fault	7	¥	Code Programming Fault ¹	
	, , , , , , , , , , , , , , , , , , ,	~		
HW MEMORY E ² PROM	8	1	Error Programming Factory Parameters	
CAN Param	8	2	Error Programming CAN Parameters	
Modbus				
Modbus Error	9	1	Communication Fault with Modbus	
		Table 25 - Erro	or Code	

smartris | CONNECTION SCHEME 10 Feedback Cable Connection to: I/O CANOpen Serial RS232 STO Motor Cable: Brake \bigcirc $(\bigcirc$ (Connection to the Supply (48 Vdc) Motor Cable: Phases

Picture 23 - Connection Scheme

For the connection of the different cables see the tables on Chapter 1:

POWER SUPPLY SMARTRIS WIRING					
PIN	SIGNAL	DESCRIPTION	COLOR (EXAMPLE)		
+	+ VBUS	Connection to + Vbus (+48 Vdc)	Red		
-	- VBUS	Connection to - Vbus	Black		

Table 26 - Power Supply Wiring Scheme

MOTOR	MOTOR PHASES SMARTRIS WIRING					
PIN	SIGNAL	DESCRIPTION	COLOR			
U	PHASE U	Motor Phase U	Black			
v	PHASE V	Motor Phase V	White			
w	PHASE W	Motor Phase W	Red			

Table 27 - Motor Phases Scheme

BRAKE	BRAKE						
PIN	SIGNAL	DESCRIPTION	COLOR (EXAMPLE)				
+	+BRAKE	Motor Brake + (connect to + Vbus)	Orange				
В	-BRAKE	Motor Brake -	Grey				

Table 28 - Brake Scheme (see Wiring Example Chapter 1)

Е

F

Input Data (Voltage / Current) Table 29 - Label Description

J

Certifications

Using the following code, the properties of the Smartris can be determined (the code is an example):

HW Release

Picture 24 - Code Example

PRODUCT	MOTOR PN	SERIAL COMM	SAFETY	MOTOR B
3 Letters	2 Letters	1 Letters	1 Letters	1 Lette
Pos 1-3	Pos 5-6	Pos 9	Pos 11	Pos 13
SM1 - Smartris I Gen	Sx - 600W	2 - RS232	0 - NO STO	B - Brake pr
SMT - Solo Drive	Mx - 1500 W	4 - RS485	1 - STO	S - Spring E
	Lx- 2300W			N - No bra
VOLTAGE	FEEDBACK	FIELDBUS	ENCLOSURE	CUSTOMIZZ
1 Letters	2 Letters	1 Letters	1 Letters	3 Letter
Pos 4	Pos 7-8	Pos 10	Pos 12	Pos 14-1
B – 24V	05 - Resolver	M - Modbus	5- IP54	000
D - 48V	RS - SRS50 N9	C - CANOpen DS402	3 - IP30	
	RM - SRM50 H9	E - EtherCAT	0 - No Enclosure	
	EK - SEK37	N - No fieldbus		
	EL - SEL37			
	KS - SKS36/SKS36S			
	KM - SKM36			
	LE - EKM36			
	LF - EKM36			
	E9 - INC.1000 Imp/Gear			
	09 - INC.1024 Imp/Gear			
	L9 - INC.2000 Imp/Gear			
	F9 - INC.2048 Imp/Gear			
	N9 - INC.2500 Imp/Gear			

Table 30 - Code Description

Ì

11 | DEBUG TEST MODE

11.1 CANOpen Test "Command Mode"

Warning

Read carefully this section to Run Motor with Smartris System and CAN Peak Tools

11.1.1 Setup

- 1) PCAN-USB (<u>https://www.peak-system.com/PCAN-USB.199.0.html?&L=1</u>)
- 2) Smartris System (with CANOpen)
- 3) Laptop with driver for PCA-USB and PcanView SW (<u>https://www.peak-system.com/PCAN-View.242.0.html?&L=1</u>)
- 4) Terminal resistor (connect between pins 2-7 of DB9 of PCAN-USB or connect pin 20 t0 pin 31 of X1 on Drive)

11.1.2 Wiring

🖿 🜏 smartris 🛚

For the connection of the different cables see the tables on Chapter 1:

	X1 - I/O SIGNAL					
PIN	SIGNAL	DESCRIPTION				
19	GND CAN	GND reference for CAN/RS485				
20	CAN_T	120 Ω Termination resistance CAN (connect to CAN H)				
30	CAN_L	CAN_L Connection				
31	CAN_H	CAN_H Connection				

		PCANUSB – DB9	
PIN	SIGNAL	DESCRIPTION	
3	GND CAN/RS485	GND reference for CAN/RS485	17 5
	CAN_T	120 Ω Termination resistance CAN (connect to CAN H-CAN L)	
2	CAN_L	CAN_L Connection	
7	CAN H	CAN H Connection	6 9

Table 31 – CAN Connection

POWER SUPPLY SMARTRIS WIRING					
PIN	SIGNAL	DESCRIPTION	COLOR (EXAMPLE)		
+	+ VBUS	Connection to + Vbus (+48 Vdc)	Red		
-	- VBUS	Connection to - Vbus	Black		
		Table 22 Device Constants Mining Cale and			

Table 32 - Power Supply Wiring Scheme

MOTOR	PHASES SMARTRIS	WIRING	
PIN	SIGNAL	DESCRIPTION	COLOR
U	PHASE U	Motor Phase U	Black
v	PHASE V	Motor Phase V	White
w	PHASE W	Motor Phase W	Red
		Table 22 Mater Dhase	

Table 33 - Motor Phases Scheme

BRAKE			
PIN	SIGNAL	DESCRIPTION	COLOR (EXAMPLE)
+	+BRAKE	Motor Brake + (connect to + Vbus)	Orange
В	-BRAKE	Motor Brake -	Grey

Table 34 - Brake Scheme (see Wiring Example Chapter 1)

11.1.3 Instructions

Set of instructions

- 1) Switch ON the Smartris drive
- 2) Launch PcanView.exe

Trace Type	PCAN Length	USB Data 00 00 00 00 00 00 00 00 00		Cycle Ti	me	Count
∞ Trace Type	CAN Length	Data 00 00 00 00 00 00 00 00		Cycle Ti	me	Count
Туре	Length 8	Data 00 00 00 00 00 00 00 00 00		Cycle Ti	me	Count
	8	00 00 00 00 00 00 00 00 00		220222.0		
	0			239323,9		5
	0	60 40 60 00 00 00 00 00		1136,7		7
	1	7F		200,0		2105
Type	Length	Data	Cycle Time	Count	Trigger	Comment
111622	8	23 FF 60 00 00 80 0C 00	Wait	1	Manual	
		30 40 60 00 06 00 00 00	14/-14	2		
	8	264000000000000000	VVdit	2	Ivianuai	
	8	2B 40 60 00 07 00 00 00 2B 40 60 00 07 00 00 00	Wait	2	Manual	
	8 8 8	2B 40 60 00 07 00 00 00 2B 40 60 00 07 00 00 00 2B 40 60 00 0F 00 00 00	Wait	2	Manual Manual	
	Туре	Type Length 8	Type Length Data 8 23 FF 60 00 00 80 0C 00	Type Length Data Cycle Time 8 23 FF 60 00 00 80 0C 00 Wait	Type Length Data Cycle Time Count 8 23 FF 60 00 00 80 0C 00 Wait 1	Type Length Data Cycle Time Count Trigger 8 23 FF 60 00 00 80 0C00 Wait 1 Manual

Smartris User Guide - FW 2.3.1

3) Connect i and select the interface (51h) and 1 Mbit/s

- 4) Select New Message
- 5) Insert 0x6060 "Mode of Operation" ID (601) Length (8) Data (hex 2F 60 60 00 03 00 00 00)

- 6) Insert 0x6040 "Control Word Shutdown" ID (601) Length (8) Data (hex 2B 40 60 00 00 00 00 00)
- 7) Insert 0x6040 "Control Word 0x06" ID (601) Length (8) Data (hex 2B 40 60 00 06 00 00 00)
- 8) Insert 0x6040 "Control Word 0x07" ID (601) Length (8) Data (hex 2B 40 60 00 07 00 00 00)
- 9) Insert 0x6040 "Control Word Enable" ID (601) Length (8) Data (hex 2B 40 60 00 0F 00 00 00)
- 10) Insert 0x60FF "Set point Speed = 3000 rpm" ID (601) Length (8) Data (hex 23 FF 60 00 00 80 0C 00)
- 11) Insert 0x60FF "Set point Speed = 1550 rpm" ID (601) Length (8) Data (hex 23 FF 60 00 00 80 06 00)
- 12) Insert 0x60FF "Set point Speed = 100 rpm" ID (601) Length (8) Data (hex 23 FF 60 00 00 70 00 00)
- 13) Insert 0x606C "Read Actual Speed" ID (601) Length (8) Data (hex 4B 6C 60 00 00 00 00 00)
- 14) Insert 0x6041 "Read Status Word" ID (601) Length (8) Data (hex 23 41 60 00 00 00 00 00)

	PCAN-View							- 🗆 🗙
File	CAN Edit Transmit	View Trac	e Window H	elp				
•0	₽ 8 8 • €	3 🐼 🎖	6 🗈 👘 🛛	• = ? 🗔 🚺				
5	Receive / Transmit	Trace 😽	PCAN-USB					
	CAN-ID	Туре	Length	Data		Cycle Tin	ne	Count
	081h		8	00 00 00 00 00 00 00 00		524153,0		2
	581h		8	60 FF 60 00 00 00 00 00		2754,4		50
	701h		1	7F		200,1		8997
Q								
Red								
Red	CAN-ID	Туре	Length	Data	Cycle Time	Count	Trigger	Comment Server Word
Red	CAN-ID ^ 601h	Туре	Length 8	Data 4841 60 00 00 00 00 00 00 23 55 60 00 00 00 00 00	Cycle Time Wait	Count 0	Trigger	Comment Status Word
Red	CAN-ID ^ 601h 601h	Туре	Length 8 8	Data 48 41 60 00 00 00 00 00 00 23 FF 60 00 00 80 0C 00 24 EF 60 00 80 00 80 0C 00	Cycle Time Wait Wait	Count 0	Trigger Manual	Comment Status Word Set Speed = 3000 rpn Set Speed = 1550 ms
Red	CAN-ID ^ 601h 601h 601h	Туре	Length 8 8 8 8	Data 48 41 60 00 00 00 00 00 00 23 FF 60 00 00 80 0C 00 23 FF 60 00 00 80 06 00 23 EF 60 00 72 00 00	Cycle Time Wait Wait Wait	Count 0 1 4	Trigger Manual Manual	Comment Status Word Set Speed = 3000 rpn Set Speed = 100 rpn Set Speed = 100 rpn
t 🛛 Red	CAN-ID ^ 601h 601h 601h 601h 601h 601h 601h 601h	Туре	Length 8 8 8 8 8 8	Data 49 41 60 00 00 00 00 00 00 23 FF 60 00 00 80 00 00 23 FF 60 00 00 80 06 00 23 FF 60 00 00 70 00 00 24 66 60 00 00 00 00	Cycle Time Wait Wait Wait Wait	Count 0 1 4 2	Trigger Manual Manual Manual	Comment Status Word Set Speed = 3000 rpm Set Speed = 1550 rpm Set Speed = 100 rpm Shutdrows
mit 🛛 🔲 Red	CAN-ID 601h 601h 601h 601h 601h 601h	Туре	Length 8 8 8 8 8 8 8 8 8	Data 49 41 60 00 00 00 00 00 00 23 FF 60 00 00 80 0 Co 23 FF 60 00 00 80 0 60 00 24 60 00 00 70 00 00 28 40 60 00 00 00 00 00	Cycle Time Wait Wait Wait Wait Wait	Count 0 1 4 2 1 1	Trigger Manual Manual Manual Manual	Comment Status Word Set Speed = 3000 rpm Set Speed = 100 rpm Shutdown CW 0xn6
nsmit 🛛 🛛 Red	CAN-ID 601h 601h 601h 601h 601h 601h 601h	Туре	Length 8 8 8 8 8 8 8 8 8 8 8 8	Data 48 41 60 00 000 00 00 00 23 FF 60 00 00 80 00 00 23 FF 60 00 00 80 00 23 FF 60 00 00 70 00 00 24 84 66 60 00 60 00 00 00 28 40 66 00 00 50 00 00 28 44 66 60 00 50 00 00	Cycle Time Wait Wait Wait Wait Wait Wait	Count 0 1 4 2 1 1 2	Trigger Manual Manual Manual Manual Manual	Comment Status Word Set Speed = 3000 rpm Set Speed = 1050 rpm Shutdown CW 0x06 CW 0x07
ransmit D Red	CAN-ID ^	Туре	Length 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Data 48 41 60 00 00 00 00 00 23 FF 60 00 00 80 6C 00 23 FF 60 00 00 80 6C 00 23 FF 60 00 00 70 00 00 28 40 60 00 00 00 00 28 40 60 00 00 00 00 28 40 60 00 70 00 00 28 40 60 00 70 00 00	Cycle Time Wait Wait Wait Wait Wait Wait Wait Wait	Count 0 1 4 2 1 1 2 1	Trigger Manual Manual Manual Manual Manual Manual	Comment Status Word Set Speed = 3000 rpm Set Speed = 1550 rpm Shutdown CW 0x06 CW 0x07 Enable
Transmit D Red	CAN-ID 601h 601h 601h 601h 601h 601h 601h 601h 601h	Туре	Length 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Data 49 41 60 00 00 00 00 00 00 23 FF 60 00 00 80 00 00 23 FF 60 00 00 80 06 00 24 40 60 00 00 00 00 00 28 40 60 00 00 00 00 00 28 40 60 00 00 00 00 00 28 40 60 00 00 20 00 00	Cycle Time Wait Wait Wait Wait Wait Wait Wait Wait	Count 0 1 4 2 1 1 2 1 1 2 1 1	Trigger Manual Manual Manual Manual Manual Manual Manual Manual	Comment Status Word Set Speed = 3000 rpn Set Speed = 1550 rpn Shutdown CW 0x06 CW 0x07 Enable Mode of Operation
Transmit D Red	CANI-ID ^	Туре	Length 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Data 49 41 60 00 00 00 00 00 00 23 FF 60 00 00 80 00 C0 23 FF 60 00 00 80 00 00 24 60 00 00 00 00 00 24 40 60 00 00 00 00 28 46 60 00 00 00 00 00	Cycle Time Wait Wait Wait Wait Wait Wait Wait Wait	Count 0 1 4 2 1 1 2 1 1 6	Trigger Manual Manual Manual Manual Manual Manual Manual Manual	Comment Status Word Set Speed = 1500 rpm Set Speed = 1500 rpm Shutdown CW 0x06 CW 0x07 Enable Mode of Operation Actual Speed
smit 🛛 Red	CANI-ID ^ 601h 601h 601h 601h 601h 601h	Туре	Length 8 8 8 8 8 8 8 8 8 8	Data 48 41 60 00 00 00 00 00 23 FF 60 00 00 80 00 60 23 FF 60 00 00 80 00 80 23 FF 60 00 00 70 00 00 24 40 60 00 00 00 00 28 40 60 00 00 00 00	Cycle Time Wait Wait Wait Wait Wait	Count 0 1 4 2 1 1	Trigger Manual Manual Manual Manual Manual	Comment Status Word Set Speed = 300 Set Speed = 15: Set Speed = 100 Shutdown CW 0x06

Smartris User Guide - FW 2.3.1 Rel. 2.0a – 20.12.2022

Run Sequence

- 1) Switch ON Power Supply
- 2) Verify LED Status 1/2 in INIT Mode
- 3) Mode of Operation $0x6060 \rightarrow 0x03$ double click on:

601h 4 8 2F 60 60 00 03 00 00 00 Wait 1 Manual Mode of Operation

- 4) Double Click on "Shutdown"
- 5) Double Click on "**CW 0x06**" (READY TO SWITCH ON 0x6040 = 0x06)
- 6) Double Click on "**CW 0x07**" (SWITCHED ON 0x6040 = 0x07)
- 7) Double Click on "**ENABLE**" (Enabled 0x6040 = 0x0F)
- 8) Verify LED STATUS ENABLED
 - Verify that the Smartris Drive is in ENABLED: read Status Word $0x6041 \rightarrow 0x27$

Verify that the brake is released

- 9) Double Click on: "Set point Speed = 100 rpm" (set 100 rpm)
- 10) Verify if the motor is running slow
- 11) Double Click on: "Read Actual Speed" to read actual speed
- 12) Double Click on: "Set point Speed = 1550 rpm" (set 1550 rpm)
- 13) Double Click on: "Set point Speed = 3000 rpm" (set 300 rpm)

 Warning

 Following set point are available for all motors. For Size S and M it is possible to set also 4500 rpm:

 Insert 0x60FF – "Set point Speed = 4500 rpm" ID (601) Length (8) Data (hex 23 FF 60 00 D4 BE 12 00)

11.2 CANOpen "Sniffering Mode"

Warning

Read carefully this section to Run Motor with Smartris System and CAN Peak Tools

11.2.1 Setup

Setup of installation

- 1) PCAN-USB (<u>https://www.peak-system.com/PCAN-USB.199.0.html?&L=1</u>)
- 2) Smartris System (with CANOpen)
- 3) Master Device (PLC, Industrial PC, Specific Electronic)
- 4) Laptop with driver for PCA-USB and PcanView SW (<u>https://www.peak-system.com/PCAN-View.242.0.html?&L=1</u>)
- 5) Y Cable to connect Smartris System Master Device Peak (laptop)
- 6) Terminal resistor (connect between pins 2-7 of DB9 of PCAN-USB or connect pin 20 t0 pin 31 of X1 on Drive)

For the connection of the different cables see the tables on Chapter 1:

	X1 - I/O SIGNAL						
PIN	SIGNAL	DESCRIPTION					
19	GND CAN	GND reference for CAN					
20	CAN_T	120 Ω Termination resistance CAN (connect to CAN H)					
30	CAN_L	CAN_L Connection					
31	CAN_H	CAN_H Connection					

		PCANUSB – DB9	
PIN	SIGNAL	DESCRIPTION	
3	GND CAN/RS485	GND reference for CAN/RS485	17 [5
	CAN_T	120 Ω Termination resistance CAN (connect to CAN H-CAN L)	
2	CAN_L	CAN_L Connection	
7	CAN_H	CAN_H Connection	69

Table 35 – CAN Connection

11.2.3 Instructions

Set of instructions

- 1) Switch ON the Smartris drive
- 2) Launch PcanView.exe

	PCAN-View								
File	e CAN Edit Tran	smit View	Trace Wi	ndow Help					
P°	8 8 8	🗲 🔀 🛛	× 🖌 🕅	🛯 🛍 🔵 🔢 🔳 😧					
Ē	Receive / Transmit	🚥 Trace	+ PCAN	I-USB					
	CAN-ID	Туре	Length	Data		Cycle Ti	ime	Count	t
	081h		8	00 00 00 00 00 00 00 00		239323,9)	5	
	581h		8	60 40 60 00 00 00 00 00		1136,7		7	
e S	701h		1	7F		200,0		2105	
						Count	Trigger	Co	mmer
	CAN-ID	Туре	Length	Data	Cycle Time	Counc			
	CAN-ID 601h	Туре	Length 8	Data 23 FF 60 00 00 80 0C 00	Cycle Time Wait	1	Manual		
t	CAN-ID ^ 601h 601h	Туре	Length 8 8	Data 23 FF 60 00 00 80 0C 00 2B 40 60 00 06 00 00 00	Cycle Time Wait Wait	1 2	Manual Manual		
mit 🔲 F	CAN-ID ^ 601h 601h 601h	Туре	Length 8 8 8	Data 23 FF 60 00 00 80 0C 00 2B 40 60 00 06 00 00 00 2B 40 60 00 07 00 00 00	Cycle Time Wait Wait Wait	1 2 2	Manual Manual Manual		
nsmit 🔲 F	CAN-ID ^ 601h 601h 601h 601h	Туре	Length 8 8 8 8 8	Data 23 FF 60 00 00 80 0C 00 2B 40 60 00 06 00 00 00 2B 40 60 00 07 00 00 00 2B 40 60 00 07 00 00 00	Cycle Time Wait Wait Wait Wait	1 2 2 1	Manual Manual Manual Manual		

3) Connect and select the interface (51h) and 1 Mbit/s (verify the Baud Rate of the final system: if different select correct Baud rate)

	Mode: C	AN (SJA10	(00)	Clock Fre	quency	8 MHz	
		Bate [khit	/s1: 1000	1)	
	Bus Timi	ng Registe	r 0: 00	P	rescaler	1	
	Bus Timi	na Reaiste	e 1. 14	1			
	ous min	ing negiste					
		imple cou	inc 1 🗸		1.000	1.0000133	
	BTR 0	BTR 1	Sample Point	tq	Nq	SJW	^
	00h	05h	88 %	125 ns	8	1	
	200h	14h	75 %	125 ns	8	1	
	OUh	23h	62 %	125 ns	8	1	
	01h	52fi	30 %	120 ms	4	1	
	01h	106	50.%	250 ns	4	1	
	40h	14h	75 %	125 ns	8	2	
	40h	23h	62 %	125 ns	8	2	~
			ОК		ancel	0	Help
				_		238	-17
Trace							
loct 🚥 Trace and st	ort tha S	niffo	r Modo				

5) Starts the sniffer

💻 Receive / Transmit 🔤 Trace 📌 PCAN-USB

	& & •←		XDB	•	🔳	2 🗖				
🚊 Receive	: / Transmit 🛛 💷	Trace 6	PCAN-USB							
Recording	30,0673 s	0,16 %	🖄 Ring Buffe	r Rx	: 157	Tx: 6	Status: 0	Errors: 0	Other: 0	
Time	CAN-ID	Rx/Tx	Туре	Length	Data					
26,4675	701h	Rx	Data	1	7F					
26,6675	701h	Rx	Data	1	7F					
26,8675	701h	Rx	Data	1	7F					
27,0675	701h	Rx	Data	1	7F					
27,2674	701h	Rx	Data	1	7F					
27,4674	701h	Rx	Data	1	7F					
27,6674	701h	Rx	Data	1	7F					
27,8674	701h	Rx	Data	1	7F					
28,0674	701h	Rx	Data	1	7F					
28,2674	701h	Rx	Data	1	7F					
28,4674	701h	Rx	Data	1	7F					
28,6674	701h	Rx	Data	1	7F					
28,8674	701h	Rx	Data	1	7F					
29,0674	701h	Rx	Data	1	7F					
29,2674	701h	Rx	Data	1	7F					
29,4674	701h	Rx	Data	1	7F					
29,6674	701h	Rx	Data	1	7F					- 1
29,8674	701h	Rx	Data	1	7F					
30,0673	701h	Rx	Data	1	7F					

6) Save the trace: click ON \blacksquare \rightarrow click on Trace \rightarrow Save and save the file "trc" with trace

11.3 ModBus Test "Command Mode"

Warning

Read carefully this section to Run Motor with Smartris System and Smartris Tools

11.3.1 Setup

- 1) USB-RS485 interface (https://ftdichip.com/products/usb-rs485-we-1800-bt/)
- 2) Smartris System (with Modbus)
- 3) Laptop with driver for USB-RS485 and SmartrisTestTool SW
- 4) Terminal resistor (connect between pin 20 to pin 31 of X1 on Drive)

11.3.2 Wiring

		X1 - I/O SIGNAL	
PIN	SIGNAL	DESCRIPTION	
19	GND RS485	GND reference for CAN/RS485	
20	RS485_T	120 Ω Termination resistance RS485 (connect to RS485+)	
30	RS485-	RS485- Connection	
31	RS485+	RS485+ Connection	

Table 36 – Modbus Connection

11.3.3 Instructions

Use the SmartrisTestTool: see the "Smartris Test Tool Guide"

Smartri	s App - Ver.	1.9.0.7 - 07/	07/2021				– 🗆 X
Options	Mode	C Reset	1 Info				
	Run Cycle		SPEED	VIDEE	CURRE	INT	I2T
			О крм	0.0 VREF	0.0	(0 %	
	Stop)	Max Speed:				
			Digital Inputs	DIG IN 1	DIG IN 2	DIG IN 3	DIG IN 4
			Digital Outputs	DIG OUT 1	DIG OUT 2	DIG OUT 3	DIG OUT 4
			Drive Status				
			DC Link				
			Drive Temperature				
			Motor Temperature				
			Impulses	1			

APPENDIX A | OPTIONS

Smartris

Cables for Lafert Standard Motors: XX in code mains the length in m (i.e. XX = 01 means 1 m)

Contact Side View

776273-1 14 poles	Description	Color	M23 12 poles		
1	S2	White	1		
2	S1	Green	2		
7	S3	Yellow	3		
	NC		4		
	NC		5		
6	S4	Brown	6		
3	R1	Red	7		
5	Shield		8		
12	NTC1a	Pink	9		
13	NTC1b	Grey	10		
8	R2	Blue	11		
	NC		12		
Twisted Pair: (White-Brown),(Green-Yellow), (Grey-Pink), (Blue-Red)					

Contact Side View

	776273-1 14 poles	Description	Color	M23 12 poles
	1	+ SIN	Brown	7
	6	REF SIN	Green	3
	2	+ COS	Blue	8
	7	REF COS	Violet	4
	3	DATA+	Red	5
	8	DATA-	Black	6
	10	+V	Brown (0.5mm ²)	1
	11	GND	White (0.5mm ²)	2
	12	NTC1a	Pink	9
	13	NTC1b	Grey	10
Pin 1	5	SHIELD		N.C.
Contact Side View	Twisted Pai (Brown 0,5 -	ir: (Green-Brown, - White 0,5)	,(Blue-Violet), (Red-	Black),(Grey-Pink),

X2 - Smartris Incremental Encoder Wiring : CAB F 1 B XX S S 0

Info

smartris

Contacts not connected have to be closed with AMPSEAL 770678-1

Attention Les contacts non connectés doivent être fermés avec AMPSEAL 770678-1

APPENDIX B | DRIVE DISPOSAL

WARNING FOR THE CORRECT DISPOSAL OF THE MOTORS AT THE END OF THEIR LIFE TIME

According to the art. 26 of the Italian law 2014, March 14th n. 49 "Implementation of the **DIRECTIVE 2012/19/EU** OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 4 July 2012, on waste electrical and electronic equipment (WEEE)"

The above symbol, applied to the equipment or its packaging, means that at the end of its lifetime the motors need to be disposed separately from the other waste materials.

The users must dispose their unused motors on behalf of the national authorized collection centers which have been approved for the electrical and electronic waste.

The right collection for recycling, treatment and disposal will contribute to avoid any potential negative environmental & healthy effect and will help both the reuse and the recycling of the motor's components/materials.

TABLE OF DISPOSAL CODES FOR ELECTRIC MOTORS

CODE OF THE MOTOR (WASTE) DISPOSED IN ALL ITS PARTS	EWC (European Waste Code)	EWC DESCRIPTION	
In the event of disposal of the full drive	16.02.14	Discarded equipment	
In the event of disposal of a disassembled drive:			
Aluminum parts: heatsink	12.01.03	Non-ferrous metal filings and turnings	
Steel parts: Cover	12.01.01	Ferrous metal filings and turnings	
Plastic parts: fan, fan cover, terminal box	12.01.05	Plastics shavings and turnings	
 Electrical components: switches, capacitors, starters, terminal board, electronic boards, IGBT modules 	16.02.16	Components removed from discarded equipment	

Lafert S.p.A.

Via J. F. Kennedy, 43 I-30027 San Donà di Piave (Venice), Italy Tel. +39 / 0421 229 611 Fax +39 / 0421 222 908 info.lafert@lafert.com

www.lafert.com

Branches & Partners

Lafert GmbH Wolf-Hirth-Straße 10 D-71034 Böblingen Germany Phone +49 175 550 4526 lafert.germany@lafert.com

Lafert Electric Motors Ltd.

Unit 17 Orion Way Crewe, Cheshire CW1 6NG United Kingdom Phone +44 / (0) 1270 270 022 Fax +44 / (0) 1270 270 023 lafertuk@lafert.com

Lafert Moteurs S.A.S.

L'Isle d'Abeau Parc de Chesnes 75, rue de Malacombe F - 38070 St. Quentin-Fallavier France Phone +33 / 474 95 41 01 Fax +33 / 474 94 52 28 info.lafertmoteurs@lafert.com

Lafert Motores Eléctricos, S.L.

Polígono Pignatelli, Nave 27 E - 50410 Cuarte de Huerva (Zaragoza) – Spain Phone +34 / 976 503 822 Fax +34 / 976 504 199 info@lafet.es

Lafert N.A. (North America)

5620 Kennedy Road - Mississauga Ontario L4Z 2A9 - Canada Phone +1 / 800/661 6413 - 905/629 1939 Fax +1 / 905/629 2852 sales@lafertna.com

Lafert Electric Motors (Australia)

Factory 3, 117-123 Abbott Road, Hallam - VIC 3803 – Australia Phone +61 / (0)3 95 46 75 15 Fax +61 / (0)3 95 47 93 96 info@lafertaust.com.au

Lafert Singapore Pte Ltd

48 Hillview Terrace #06-06 Hillview Building - Singapore 669269 Phone +65 / 67630400 - 67620400 Fax +65 / 67630600 info@lafert.com.sg

Lafert (Suzhou) Co., Ltd.

No.3 Industrial Plant Building Yue Xi Phase 3, Tian E Dang Lu 2011, 15104 Wu Zhong Economic Development Zone, Suzhou, China Phone +86 / 512 6687 0618 Fax +86 / 512 6687 0718 Info.lafertsuzhou@lafert.com

Lafert Servo Drives Via E. Mattei 84/25 40138 Bologna, Italy

40138 Bologna, Italy Tel. +39 / 051 780 294 Fax +39 / 051 781 293 info.lafert@lafert.com