

RPS-PRE-ISO-090-3 Product Number 960850

RPS-PRE-ISO-110-3 Product Number 960852

RPS-PRE-ISO-200-3 Product Number 960854

ne><en

Roller Pinion System Life

The RPS system offers an efficiency greater than 99% with a long life of up to 60,000,000 pinion revolutions (up to 36 million meters of travel). Typically the rack/gear lasts through several pinion changes.

Pinion Life Data & Calculations	32–33
Rack Life Data & Calculations	34–35
System Life Graphs	36–38

Calculating RPS System Life

The calculations in the following section will allow you to calculate the expected rack and pinion life. These calculations will result in the same values as the charts on the following pages.

RPS Pinion Life Data & Calculations

			Table 7 - RPS Pinion Life Valu				e Values				
				RPS16		RPS20		RPS25		DDCOD	
		RPS10	RPS12	Premium	Value	Premium	Value	Premium	Value	RP532	RPS40
Max Torque (T _{max})	Nm	4.0	9.5	61.1	12.8	92.3	23.9	159.2	43.8	641.5	1375.2
Torque at Max Life (T _{final})	Nm	4.0	9.5	33.7	12.8	52.5	23.9	89.5	43.8	366.6	1146
Distance Per Revolution (Lrev)	m	0.1	0.12	0.16	0.16	0.2	0.2	0.25	0.25	0.384	0.48
Transition Point (ET)	million contacts	60	60	8	2	8.2	2	8.5	2	9.4	32
Max Life (Nmax contacts)	million contacts	60	60	60	2	60	2	60	2	60	60
Constant (C)		NA	NA	115.30	NA	179.43	NA	305.91	NA	1255.14	3916.09

Step 1: Gather Application Data

Before you begin calculations, there are three key measurements that you will need from your application. Collect the data and record it in space provided to the right.

Measurements Required for Pinion Calculations	Customer Data (record your values below)	Sample Data
Average Torque (T _{avg})	Nm	85 Nm
Distance Per Cycle (L) (single direction move)	m	1.3 m
Average Speed (V _{avg})	m/s	2 m/s

Step 2: Calculate The Total Number of Pinion Contacts (N_{contacts})

Perform the following calculations using the data collected from your application data in Step 1.

Pinion Roller Contacts (N_{contacts})

The total number of roller contacts ($N_{contacts}$) that an RPS Pinion can sustain before needing replacement is based on the average torque of your application. Determine which equivalency or inequality statement below is true for the average torque (T_{avg}) of your application. Then complete the corresponding pinion roller contact equation and record your value below.

If T _{avg} is:	Then N _{contacts} :		
$\leq T_{final}$	= N _{max contacts}	Pin	ion Life in Roller Contacts
$> T_{final}$ and $< T_{max}$	$= (C \div T_{avg})^{3.333} = (\div Nm)^{3.333}$	N _{contacts} =	million contacts
= T _{max}	= E _T		

Sample: (Evaluating RPS20 size) Ncontacts = (179.43 ÷ 85 Nm) 3.333 = 12 million contacts

RPS Pinion Life Calculations

Step 3: Convert Roller Contacts To Hours, Meters Or Revolutions

There are two options for converting contacts to other units: exact and estimated. Exact should be used whenever possible. The estimation is available for customers who do not have a well-defined distance per cycle.

Exact option: Pinion Life in Hours (N_{hours})

Use Table 7 along with the data you collected above to calculate the total number of service hours your pinion can provide before needing replacement. First calculate E_1 to use in the N_{hours} equation.

Sample: $E_1 = 1.3 \text{ m} \div 0.2 \text{ m} = 6.5 \text{ m} \longrightarrow$ Round up to 7.

Estimation Options: Pinion Life in Meters and Life in Revolutions

These calculations assume the pinion travels nonstop in one direction throughout its whole life.

Pinion Life in Meters (N _{meters})				Р	inion Life in Meters	
$N_{meters} = N_{contacts} \bullet L_{rev} \bullet 10^6$	N _{meters} =	•	m • 10 ⁶	N _{meters} =	m	
ample: N _{meters} = 12 • 0.2 m • 10 ⁶ = 2,400,000 m						

Pinion Life in Revolutions (N _{rev})		Pinion Life in Revolutions
rev – recontacts	N _{rev} =	million revolutions

Sample: N_{rev} = 12 million revolutions

Table 8 - RPS Rack Life Values

	RPS Rack Si	e RPS10	RPS12	RPS16	RPS20	RPS25	RPS32	RPS40
	Pitch (P) mete	rs 0.01	0.012	0.016	0.02	0.025	0.032	0.04
Dis	tance Per Revolution (L _{rev}) mete	r s 0.1	0.12	0.16	0.2	0.25	0.384	0.48
	Max Dynamic Thrust (F ^{max})	N 250	500	2400	2900	4000	10500	18000
lard	Thrust at Max Life (F _{final})	N 250	500	1000	1500	2200	6000	15000
& Stand	Transition Point milli (E⊤) contac	n 30	30	5	5	5	5	5
mium 8	Max Life (Nmax contacts)			3	0 Million Contact	S		
Pre	Slope (m)	NA	NA	-56	-56	-72	-180	-120
	Intercept (b)	N NA	NA	2680	3180	4360	11400	18600
	Max Dynamic Thrust (F _{max})	NA NA	NA	1500	2250	3300	5 400	6000
	Thrust at Max Life (T _{final})	N NA	NA	1000	1500	2200	3600	6000
rance	Transition Point milli (E⊤) contac	n NA	NA	5	5	5	5	30
Endu	Max Life (Nmax contacts)	NA	NA		3	0 Million Contact	S	
	Slope (m)	NA	NA	-20	-30	-44	-72	NA
	Intercept (b)	N NA	NA	1600	2400	3520	5760	NA
& nless	Max Dynamic Thrust (F _{max})	N NA	NA	750	1125	1650	2700	4500
Iniversal à Prsal Stair	Thrust at Max Life (F _{final})	N NA	NA	750	1125	1650	2700	4500
Uni Univers	Max Life (Nmax contacts)	NA	NA		5 Million	Contacts		2 Million Contacts

Step 1: Gather Application Data

Before you begin calculations, there are three key measurements that you will need from your application. Collect the data and record it in space provided below.

Measurements Required for Rack Calculations	Customer Data (Record your values below)	Sample Data
Average Thrust Force (F _{avg})	Ν	2500 N
Distance Per Cycle (L) (single direction move)	m	1.3 m
Average Speed (V _{avg})	m/s	2 m/s

Step 2: Calculate The Total Number of Tooth Contacts

Perform the following calculations using the data collected from your application and the values from Table 8.

Rack Tooth Contacts (N_{contacts})

The total number of tooth contacts ($N_{contacts}$) that an RPS Rack can sustain before needing replacement is based on the average thrust force of your application. Use Table 5 to determine which equivalency or inequality statement below is true for the average thrust force (F_{avg}) of your application. Then complete the corresponding rack tooth contact formula and record your value below.

If F _{avg} is:	Then N _{contacts} :	
≤ F _{final}	= N _{max contacts}	Rack Life in Tooth Contacts
> F _{final} & < F _{max}	$= (F_{avg} - b) \div m = \begin{pmatrix} N - N \end{pmatrix} \div$	N _{contacts} = million contacts
= F _{max}	= Er	

Sample: (Evaluating RPS20 size) Ncontacts = (2500 N − 3180) ÷ -56 = 12 million contacts

Step 3: Convert Rack Tooth Contacts to Hours of Life

Perform the following calculations using the data collected from your application and the values from Table 5.

Rack Life in Hours (N_{hours})

Sample: $N_{hours} = (12 \div 3600) \cdot (1.3 \text{ m} \div 2 \text{ m/s}) \cdot 10^6 = 2166 \text{ hours}$

RPS System Life Graphs (RPS10, 12 and 16)

The RPS system life ratings are based on the force of the load. Refer to the following graphs to determine the pinion and rack life based on your application load forces. Graphs show the thrust along side the corresponding torque to more easily calculate your complete system life. Typically the pinion can be replaced numerous times before replacing the rack.

RPS System Life Graphs (RPS40)

Notes	